Suppr超能文献

聚合物半导体上光催化水分解的非绝热动力学

Nonadiabatic Dynamics of Photocatalytic Water Splitting on A Polymeric Semiconductor.

作者信息

You Peiwei, Lian Chao, Chen Daqiang, Xu Jiyu, Zhang Cui, Meng Sheng, Wang Enge

机构信息

Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

出版信息

Nano Lett. 2021 Aug 11;21(15):6449-6455. doi: 10.1021/acs.nanolett.1c01187. Epub 2021 Jul 19.

Abstract

To elucidate the nature of light-driven photocatalytic water splitting, a polymeric semiconductor-graphitic carbon nitride (g-CN)-has been chosen as a prototype substrate for studying atomistic water spitting processes in realistic environments. Our nonadiabatic quantum dynamics simulations based on real-time time-dependent density functional theory reveal explicitly the transport channel of photogenerated charge carriers at the g-CN/water interface, which shows a strong correlation to bond re-forming. A three-step photoreaction mechanism is proposed, whereas the key roles of hole-driven hydrogen transfer and interfacial water configurations were identified. Immediately following photocatalytic water splitting, atomic pathways for the two dissociated hydrogen atoms approaching each other and forming the H gas molecule are demonstrated, while the remanent OH radicals may form intermediate products (e.g., HO). These results provide critical new insights for the characterization and further development of efficient water-splitting photocatalysts from a dynamic perspective.

摘要

为了阐明光驱动光催化水分解的本质,一种聚合物半导体——石墨相氮化碳(g-CN)——被选为在实际环境中研究原子尺度水分解过程的原型基底。我们基于实时含时密度泛函理论的非绝热量子动力学模拟明确揭示了光生载流子在g-CN/水界面的传输通道,该通道与键的重新形成有很强的相关性。提出了一种三步光反应机制,同时确定了空穴驱动的氢转移和界面水构型的关键作用。在光催化水分解之后,立即展示了两个离解的氢原子相互靠近并形成氢气分子的原子路径,而剩余的羟基自由基可能形成中间产物(例如,HO)。这些结果从动态角度为高效水分解光催化剂的表征和进一步开发提供了重要的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验