Suppr超能文献

变量选择方法在主要医学期刊中报道较差,但很少被误用:文献综述。

Variable selection methods were poorly reported but rarely misused in major medical journals: Literature review.

机构信息

Department of Biostatistics, CHU Rouen, F-76000 Rouen, France; Department of Biomedical Informatics, F-76000 Rouen, France; Normandie Univ, UNIROUEN, LITIS EA 4108, F-76000 Rouen, France.

Department of Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique Hôpitaux Paris and Paris Saclay University, Boulogne Billancourt, France; Inserm U 1018, University of Rouen and University Paris-Saclay, France; Institut de Recherche bioMédicale et d'Epidémiologie du Sport - EA7329, INSEP - Paris University, France.

出版信息

J Clin Epidemiol. 2021 Nov;139:12-19. doi: 10.1016/j.jclinepi.2021.07.006. Epub 2021 Jul 16.

Abstract

Objective This work presents a review of the literature on reporting, practice and misuse of knowledge-based and data-driven variable selection methods, in five highly cited medical journals, considering recoding and interaction unlike previous reviews. Study Design and Setting Original observational studies with a predictive or explicative research question with multivariable analyses published in N. Engl. J. Med., Lancet, JAMA, Br. Med. J. and Ann. Intern. Med. between 2017 and 2019 were searched. Article screening was performed by a single reader, data extraction was performed by two readers and a third reader participated in case of disagreement. The use of data-driven variable selection methods in causal explicative questions was considered as misuse. Results 488 articles were included. The variable selection method was unclear in 234 (48%) articles, data-driven in 78 (16%) articles and knowledge-based in 176 (36%) articles. The most common data-driven methods were: Univariate selection (n = 22, 4.5%) and model comparisons or testing for interaction (n = 17, 3.5%). Data-driven methods were misused in 51 (10.5%) of articles. Conclusion Overall reporting of variable selection methods is insufficient. Data-driven methods seem to be used only in a minority of articles of the big five medical journals.

摘要

目的 本研究回顾了在五本高引医学期刊中,关于基于知识和数据驱动的变量选择方法的报告、实践和误用的文献,与之前的综述不同,考虑了重编码和交互作用。

研究设计与设置 检索了 2017 年至 2019 年期间在《新英格兰医学杂志》、《柳叶刀》、《美国医学会杂志》、《英国医学杂志》和《内科学年鉴》上发表的具有预测或解释性研究问题的原始观察性研究,这些研究采用了多变量分析。由一名读者进行文章筛选,两名读者进行数据提取,如果有分歧,第三名读者参与。将数据驱动的变量选择方法用于因果解释性问题被视为误用。

结果 共纳入 488 篇文章。234 篇(48%)文章中变量选择方法不明确,78 篇(16%)文章采用数据驱动方法,176 篇(36%)文章采用基于知识的方法。最常见的数据驱动方法包括:单变量选择(n=22,4.5%)和模型比较或交互作用检验(n=17,3.5%)。在 51 篇(10.5%)文章中存在数据驱动方法的误用。

结论 变量选择方法的报告总体上不足。数据驱动方法似乎仅在五大医学期刊的少数文章中使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验