State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.
Nat Chem. 2021 Oct;13(10):1006-1016. doi: 10.1038/s41557-021-00746-7. Epub 2021 Jul 19.
The development of innovative strategies for the synthesis of N-heterocyclic compounds is an important topic in organic synthesis. Ring expansion methods to form large N-heterocycles often involve the cycloaddition of strained aza rings with π bonds. However, in some cases such strategies suffer from some limitations owing to the difficulties in controlling the regioselectivity and the accessibility of specific π-bond synthons. Here, we report the development of a general ring expansion strategy that involves a formal cross-dimerization between three-membered aza heterocycles and three- and four-membered-ring ketones through synergistic bimetallic catalysis. These formal cross-dimerizations of two different strained rings are efficient and scalable, and provide a straightforward and broadly applicable means of assembling diverse N-heterocycles, such as 3-benzazepinones, dihydropyridinones and uracils, which are versatile units in numerous drugs and biologically active compounds. Preliminary mechanistic studies revealed that the C-C bond of strained ring ketones is first cleaved by the Pd species during the reaction.
开发用于合成 N-杂环化合物的创新策略是有机合成中的一个重要课题。通过环加成反应形成大的 N-杂环的环扩大方法通常涉及张力氮环与π键的加成。然而,在某些情况下,由于难以控制区域选择性和特定π键合成子的可及性,这些策略存在一些局限性。在这里,我们报告了一种通用的环扩大策略的发展,该策略涉及三员氮杂环和三员及四员环酮之间通过协同双金属催化的形式交叉二聚化。这些两种不同张力环的形式交叉二聚反应高效且可扩展,并为组装各种 N-杂环提供了一种直接且广泛适用的方法,例如 3-苯并氮杂卓酮、二氢吡啶酮和尿嘧啶,它们是许多药物和生物活性化合物中多功能单元。初步的机理研究表明,在反应过程中,Pd 物种首先切断了张力环酮的 C-C 键。