Zhang Xian, Zheng Renji, Jin Mengtian, Shi Run, Ai Zhong, Amini Abbas, Lian Qing, Cheng Chun, Song Shaoxian
School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2021 Aug 4;13(30):35647-35656. doi: 10.1021/acsami.1c07504. Epub 2021 Jul 20.
Developing earth-abundant, active, and stable electrocatalysts for hydrogen evolution reactions (HERs) at large current densities has remained challenging. Herein, heterostructured nickel foam-supported cobalt carbonate hydroxide nanoarrays embellished with NiCoS nanoflakes (NiCoS@CoCH NAs/NF) are designed via room-temperature sulfurization, which can drive 10 and 1000 mA cm at low overpotentials of 55 and 438 mV for HER and exhibit impressive long-term stability at the industrial-level current density. Surprisingly, NiCoS@CoCH NAs/NF after a 500 h stability test at 500 mA cm exhibit better catalytic performance than the initial one at high current densities. Simulations showed that NiCoS@CoCH NAs have an optimized hydrogen adsorption free energy (Δ) of 0.02 eV, owing to the synergistic effect of CoCH (Δ = 1.36 eV) and NiCoS (Δ = 0.03 eV). The electric field at the heterostructure interface leads to electron transport from CoCH to NiCoS, which enhances HER dynamics. The hierarchical nanostructure has a large specific area and a superaerophobic surface, which are beneficial to hydrogen generation/release for efficient and stable HER.
开发用于在大电流密度下进行析氢反应(HER)的储量丰富、活性高且稳定的电催化剂仍然具有挑战性。在此,通过室温硫化设计了一种异质结构的泡沫镍负载的氢氧化碳酸钴纳米阵列,其表面装饰有NiCoS纳米薄片(NiCoS@CoCH NAs/NF),该催化剂在55和438 mV的低过电位下可驱动HER达到10和1000 mA cm²,并且在工业级电流密度下表现出令人印象深刻的长期稳定性。令人惊讶的是,在500 mA cm²下进行500 h稳定性测试后的NiCoS@CoCH NAs/NF在高电流密度下表现出比初始催化剂更好的催化性能。模拟结果表明,由于CoCH(Δ = 1.36 eV)和NiCoS(Δ = 0.03 eV)的协同效应,NiCoS@CoCH NAs具有0.02 eV的优化氢吸附自由能(Δ)。异质结构界面处的电场导致电子从CoCH传输到NiCoS,从而增强了HER动力学。这种分级纳米结构具有大的比表面积和超疏气表面,有利于氢气的产生/释放,以实现高效稳定的HER。