Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand.
School of Agriculture, Massey University, Ruakura, Hamilton, 3240, New Zealand.
Genet Sel Evol. 2021 Jul 20;53(1):62. doi: 10.1186/s12711-021-00648-9.
Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk.
Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk.
This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.
傅里叶变换中红外(FT-MIR)光谱为从牛奶样本中预测牛奶成分和其他新特性提供了一种高通量且廉价的方法。虽然已经有许多针对 FT-MIR 预测特性的全基因组关联研究(GWAS),但针对单个 FT-MIR 波数的 GWAS 却很少。本研究使用了 38085 头混合品种的新西兰奶牛的全基因组序列的 imputed 数据,对 895 个个体 FT-MIR 波数表型进行了 GWAS,并评估了这些直接表型在识别候选因果基因和变体,以及提高我们对牛奶理化性质的理解方面的价值。
针对 895 个个体 FT-MIR 波数表型中的每一个分别进行的 GWAS,鉴定出了 450 个具有显著 FT-MIR 波数 QTL 的 1-Mbp 基因组区域,而针对 FT-MIR 预测的牛奶成分特性鉴定出了 246 个 1-Mbp 基因组区域。使用乳腺 RNA-seq 数据和基因注释信息鉴定出了 38 个共定位和共分离的表达 QTL(eQTL),以及 31 个蛋白质序列突变,这些突变包括 ABO 基因的一个无效突变,该突变可能在改变牛奶寡糖谱方面起作用。对于这些分析中涉及的候选因果基因,我们检查了相关基因座与中红外光谱中每个波数之间的关联强度。这揭示了基因组上距离较远的基因座之间存在共享的关联模式,突出了通过其在泌乳中的生物学作用以及对牛奶化学成分的预期影响而连接在一起的基因座簇。
本研究证明了 FT-MIR 波数表型在提高我们对牛奶成分的理解方面的实用性,提供了比从 FT-MIR 预测的成分特性中发现的更多的 QTL 和潜在的因果基因和变体。检查感兴趣的基因座在中红外光谱上的显著模式进一步突出了关联的共性,这可能反映了牛奶成分的物理化学性质。