Suppr超能文献

理解生物鸟粪石生物矿化的机制。

Understanding the mechanisms of biological struvite biomineralisation.

机构信息

Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.

Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.

出版信息

Chemosphere. 2021 Oct;281:130986. doi: 10.1016/j.chemosphere.2021.130986. Epub 2021 May 25.

Abstract

The mechanisms of struvite production through biomineralisation were investigated for five microorganisms (Bacillus pumilus, Brevibacterium antiquum, Myxococcus xanthus, Halobacterium salinarum and Idiomarina loihiensis). After 72-96 h of incubation, the microbial strains tested increased the solution pH from 7.5 to 7.7 to 8.4-8.7, and removed ortho-phosphate (63-71%) and magnesium (94-99%) by biomineralisation. The minerals formed were identified as struvite (i.e. bio-struvite). Within the initial 24 h of incubation, microbial growth rates of 0.16-0.28 1/h were measured, and bio-struvite production was observed when the solution supersaturation index with respect to struvite achieved 0.6-0.8 units. The crystals produced by B. pumilus, H. salinarum and M. xanthus were thin trapezoidal-platy shaped and presented a gap size about 200 μm for intervals between cumulative volume undersize distribution at 50% and 90%. While B. antiquum and I. loihiensis produced crystals of coffin-lid/long-bar shape and a narrow size gap around 100 μm for intervals between cumulative volume percentage of 50% and 90%, indicating homogeneous crystal size distribution. Intracellular supersaturation of struvite phase was achieved within B. antiquum and I. loihiensis cells, corresponding to observation of intracellular vesicle-like structures occupied with electron-dense granules/materials. This study suggests that B. antiquum and I. loihiensis produced bio-struvite through biologically controlled mineralisation. This mechanism is the preferred for recovering nutrients from streams such as wastewater because it allows a link between manipulation of microbial growth conditions and bio-struvite production, even in highly complex streams like wastewater.

摘要

通过生物矿化研究了五种微生物(短小芽孢杆菌、古菌 Brevibacterium antiquum、粘球菌 Myxococcus xanthus、盐卤 Halobacterium salinarum 和深海热泉 Idioomarina loihiensis)形成鸟粪石的机制。在 72-96 小时的孵育后,测试的微生物菌株将溶液 pH 值从 7.5 升高到 7.7 再升高到 8.4-8.7,并通过生物矿化去除了正磷酸盐(63-71%)和镁(94-99%)。形成的矿物质被鉴定为鸟粪石(即生物鸟粪石)。在孵育的最初 24 小时内,测量到微生物的生长速率为 0.16-0.28 1/h,并且当溶液相对于鸟粪石的过饱和度指数达到 0.6-0.8 单位时观察到生物鸟粪石的产生。短小芽孢杆菌、盐卤和粘球菌产生的晶体呈薄的梯形板状,在累积体积小尺寸分布的 50%和 90%之间的间隔处呈现约 200 μm 的间隙尺寸。而古菌 Brevibacterium antiquum 和深海热泉 Idioomarina loihiensis 产生的晶体呈棺材盖/长棒状,在累积体积 50%和 90%之间的间隔处的间隙尺寸约为 100 μm,表明晶体尺寸分布均匀。在古菌 Brevibacterium antiquum 和深海热泉 Idioomarina loihiensis 细胞内实现了鸟粪石相的细胞内过饱和度,这对应于观察到充满电子致密颗粒/物质的细胞内囊泡状结构。本研究表明,古菌 Brevibacterium antiquum 和深海热泉 Idioomarina loihiensis 通过生物控制的矿化作用产生生物鸟粪石。这种机制是从溪流(如废水)中回收营养物质的首选方法,因为它允许在微生物生长条件和生物鸟粪石生产之间建立联系,即使在像废水这样高度复杂的溪流中也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验