Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.
Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.
Chemosphere. 2021 Oct;281:130986. doi: 10.1016/j.chemosphere.2021.130986. Epub 2021 May 25.
The mechanisms of struvite production through biomineralisation were investigated for five microorganisms (Bacillus pumilus, Brevibacterium antiquum, Myxococcus xanthus, Halobacterium salinarum and Idiomarina loihiensis). After 72-96 h of incubation, the microbial strains tested increased the solution pH from 7.5 to 7.7 to 8.4-8.7, and removed ortho-phosphate (63-71%) and magnesium (94-99%) by biomineralisation. The minerals formed were identified as struvite (i.e. bio-struvite). Within the initial 24 h of incubation, microbial growth rates of 0.16-0.28 1/h were measured, and bio-struvite production was observed when the solution supersaturation index with respect to struvite achieved 0.6-0.8 units. The crystals produced by B. pumilus, H. salinarum and M. xanthus were thin trapezoidal-platy shaped and presented a gap size about 200 μm for intervals between cumulative volume undersize distribution at 50% and 90%. While B. antiquum and I. loihiensis produced crystals of coffin-lid/long-bar shape and a narrow size gap around 100 μm for intervals between cumulative volume percentage of 50% and 90%, indicating homogeneous crystal size distribution. Intracellular supersaturation of struvite phase was achieved within B. antiquum and I. loihiensis cells, corresponding to observation of intracellular vesicle-like structures occupied with electron-dense granules/materials. This study suggests that B. antiquum and I. loihiensis produced bio-struvite through biologically controlled mineralisation. This mechanism is the preferred for recovering nutrients from streams such as wastewater because it allows a link between manipulation of microbial growth conditions and bio-struvite production, even in highly complex streams like wastewater.
通过生物矿化研究了五种微生物(短小芽孢杆菌、古菌 Brevibacterium antiquum、粘球菌 Myxococcus xanthus、盐卤 Halobacterium salinarum 和深海热泉 Idioomarina loihiensis)形成鸟粪石的机制。在 72-96 小时的孵育后,测试的微生物菌株将溶液 pH 值从 7.5 升高到 7.7 再升高到 8.4-8.7,并通过生物矿化去除了正磷酸盐(63-71%)和镁(94-99%)。形成的矿物质被鉴定为鸟粪石(即生物鸟粪石)。在孵育的最初 24 小时内,测量到微生物的生长速率为 0.16-0.28 1/h,并且当溶液相对于鸟粪石的过饱和度指数达到 0.6-0.8 单位时观察到生物鸟粪石的产生。短小芽孢杆菌、盐卤和粘球菌产生的晶体呈薄的梯形板状,在累积体积小尺寸分布的 50%和 90%之间的间隔处呈现约 200 μm 的间隙尺寸。而古菌 Brevibacterium antiquum 和深海热泉 Idioomarina loihiensis 产生的晶体呈棺材盖/长棒状,在累积体积 50%和 90%之间的间隔处的间隙尺寸约为 100 μm,表明晶体尺寸分布均匀。在古菌 Brevibacterium antiquum 和深海热泉 Idioomarina loihiensis 细胞内实现了鸟粪石相的细胞内过饱和度,这对应于观察到充满电子致密颗粒/物质的细胞内囊泡状结构。本研究表明,古菌 Brevibacterium antiquum 和深海热泉 Idioomarina loihiensis 通过生物控制的矿化作用产生生物鸟粪石。这种机制是从溪流(如废水)中回收营养物质的首选方法,因为它允许在微生物生长条件和生物鸟粪石生产之间建立联系,即使在像废水这样高度复杂的溪流中也是如此。