Li Youbing, Ma Guoliang, Shao Hui, Xiao Peng, Lu Jun, Xu Jin, Hou Jinrong, Chen Ke, Zhang Xiao, Li Mian, Persson Per O Å, Hultman Lars, Eklund Per, Du Shiyu, Chai Zhifang, Huang Zhengren, Jin Na, Ma Jiwei, Liu Ying, Lin Zifeng, Huang Qing
Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China.
Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China.
Nanomicro Lett. 2021 Jul 22;13(1):158. doi: 10.1007/s40820-021-00684-6.
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of VSnC MAX phase by the molten salt method. VSnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g and volumetric capacity of 570 mAh cm as well as superior rate performance of 95 mAh g (110 mAh cm) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of VSnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at VC layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
MAX相作为二维MXene的前驱体正受到关注,二维MXene在电化学储能应用中被广泛研究。在此,我们报道了通过熔盐法制备VSnC MAX相。VSnC被研究用作锂存储负极,展现出490 mAh g的高比容量和570 mAh cm的体积容量,以及在50 C下95 mAh g(110 mAh cm)的优异倍率性能,超过了以往报道的MAX相负极的性能。在原位X射线衍射和密度泛函理论的支持下,提出了一种具有双氧化还原反应的电荷存储机制,即Sn-Li(脱)合金化反应发生在VSnC颗粒边缘位点,此处Sn原子暴露于电解质中,随后在含Li的VC层发生氧化还原反应。本研究为使用具有氧化还原活性的M位和A位元素的MAX相作为高倍率锂存储材料提供了前景。