Sun Xun, Guan Xin, Feng Hao, Zheng Dengchao, Tian Wenli, Li Chengyi, Li Chuiyu, Yan Minglei, Yao Yadong
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
J Colloid Interface Sci. 2021 Dec 15;604:719-726. doi: 10.1016/j.jcis.2021.06.149. Epub 2021 Jul 7.
Herein, we demonstrate a direct growth of amorphous metal oxyhydroxide (AMO) attached on CeO by a galvanic replacement mechanism as advanced oxygen evolution reaction (OER) catalyst. In this unique structure, the CeO substrate not only offers high specific surface area for the formation of AMO, but also provides high conductivity, guaranteeing the promoted electron transfer for the catalytic reaction. In addition, the AMO on the surface of the CeO exposes abundant active sites for the OER. Benefiting from the above advantages, the as-prepared AMO@CeO supported on nickel foam (AMO@CeO/NF) exhibits excellent OER performance with low overpotential of 261 mV at 10 mA cm, high turnover frequency of 0.07 s at 20 mA cm and superior stability in 1.0 M KOH.
在此,我们展示了通过电化学生成置换机制直接生长在CeO上的非晶态金属羟基氧化物(AMO)作为先进的析氧反应(OER)催化剂。在这种独特的结构中,CeO基底不仅为AMO的形成提供了高比表面积,还提供了高导电性,确保了催化反应中促进的电子转移。此外,CeO表面的AMO暴露出丰富的OER活性位点。受益于上述优势,制备的负载在泡沫镍上的AMO@CeO(AMO@CeO/NF)表现出优异的OER性能,在10 mA cm时过电位低至261 mV,在20 mA cm时周转频率高达0.07 s,并且在1.0 M KOH中具有优异的稳定性。