Suppr超能文献

Functional significance and neural basis of larval lamprey startle behaviour.

作者信息

Currie S N, Carlsen R C

机构信息

Department of Human Physiology, University of California, Davis 95616.

出版信息

J Exp Biol. 1987 Nov;133:121-35. doi: 10.1242/jeb.133.1.121.

Abstract
  1. The vibration-evoked startle response mediates rapid withdrawal in burrowed larval lampreys (ammocoetes). Ammocoetes withdraw in response to vibration by contracting pre-existing lateral bends in the trunk and tail, thus pulling their heads deeper into the burrow. 2. The motor effects of an ammocoete startle response are dependent on pre-existing posture. Areas of lateral body curvature contract more and exhibit larger electromyogram (EMG) amplitudes on their inner sides than on their outer sides. 3. Both of the anterior Mth and posterior Mth' (Mauthner) cells and both of the B1 and B2 (bulbar) Müller cells fired action potentials in response to vibration of the otic capsules. Both B3 and B4 Müller cells were inhibited by vibration, while M (mesencephalic) and I1 (isthmic) Müller cells were inhibited by ipsilateral vibration and excited by contralateral vibration. 4. Simultaneous action potentials in both of the anterior Mth cells were appropriate and sufficient for initiating the startle response EMG in a semi-intact preparation. 5. This study demonstrates a Mauthner-initiated startle response which activates musculature on both sides of the body to produce a rapid withdrawal movement and is thus adapted to the eel-like form and burrowed lifestyle of larval lampreys.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验