Suppr超能文献

好的,请提供需要翻译的文本。

Anaerobic hydrolysis of complex substrates in full-scale aerobic granular sludge: enzymatic activity determined in different sludge fractions.

机构信息

Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands.

Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands.

出版信息

Appl Microbiol Biotechnol. 2021 Aug;105(14-15):6073-6086. doi: 10.1007/s00253-021-11443-3. Epub 2021 Jul 24.

Abstract

Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and β-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2-1 mm), flocculent sludge (0.045-0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5-7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55-68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. KEY POINTS: • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater.

摘要

复杂底物,如蛋白质、碳水化合物和脂质,是生活污水的主要成分,但它们在基于生物膜的污水处理技术中的降解情况,如好氧颗粒污泥(AGS),还没有被很好地理解。水解被认为是复杂底物生物转化中的限速步骤,因此,它将影响生物膜或颗粒对大量污水 COD(化学需氧量)的利用。为了研究这些类型生物量中的复杂底物的水解,本文研究了在全规模 AGS 反应器中不同污泥部分的主要水解酶的厌氧活性。在完全混合的厌氧条件下使用显色底物来确定大颗粒(直径大于 1 毫米)、小颗粒(0.2-1 毫米)、絮状污泥(0.045-0.2 毫米)和主体液体中的脂肪酶、蛋白酶、α-葡萄糖苷酶和β-葡萄糖苷酶活性。此外,还测定了进水样的组成和水解活性。我们的结果表明,污泥水解废水可溶性和胶体聚合物底物的能力过剩。与大颗粒和较小颗粒相比,絮状污泥部分具有最高的比水解活性(1.5-7.5 倍),这与其大的可用表面积一致。然而,全规模反应器中的生物量由 84%的大颗粒组成,这使得大颗粒占反应器中总水解活性潜力的 55-68%。这些观察结果为大颗粒对聚合物 COD 转化的贡献提供了新的认识,并表明大颗粒可以水解大量这种进水部分。厌氧去除聚合物可溶性和胶体状底物可以澄清在全规模装置中观察到的稳定颗粒形成,即使那些装置用复杂废水进料。关键点:

  • AGS 反应器中大颗粒和小颗粒含有>70%的水解潜力。

  • 絮状污泥具有高水解活性,但在 AGS 中占<10%VS。

  • AGS 对生活污水中的复杂底物具有水解能力过剩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e93/8390406/29d9dd3e21e3/253_2021_11443_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验