Suppr超能文献

密西西比鳄幼体轴向肌肉结构的缩放揭示了辅助呼吸机制的性能增强。

Scaling of axial muscle architecture in juvenile Alligator mississippiensis reveals an enhanced performance capacity of accessory breathing mechanisms.

机构信息

Department of Biosciences, College of Science, Swansea University, Wales, UK.

School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

出版信息

J Anat. 2021 Dec;239(6):1273-1286. doi: 10.1111/joa.13523. Epub 2021 Jul 23.

Abstract

Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross-sectional area [PCSA]) and investigate their scaling in juvenile Alligator mississippiensis spanning an order of magnitude in body mass (359 g-5.5 kg). Comparatively, the expiratory muscles (transversus abdominis, rectus abdominis, iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force-generating capacity, while the inspiratory muscles (diaphragmaticus, truncocaudalis ischiotruncus, ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessory diaphragmaticus scaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. The iliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force-generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of the diaphragmaticus and compliance of the body wall in the lumbar region against which it works may contribute to low-cost breathing in crocodilians.

摘要

羊膜动物胸部和腹部区域的定量功能解剖对于理解同时呼吸和运动的限制因素和适应机制至关重要。鳄鱼具有多种运动模式和可变的呼吸力学,这得益于基础和衍生(辅助)肌肉。然而,这些系统的内在灵活性尚未得到很好的研究,鳄鱼躯干的功能特化也尚未得到研究。身体大小的增加和躯干刚度的增加预计会导致肌肉力量需求不成比例地增加,从而限制基础肋吸气机制,需要改变呼吸力学。在这里,我们描述了躯干肌肉的解剖结构,以及决定肌肉性能的特性(质量、长度和生理横截面积 [PCSA]),并研究了它们在跨越身体质量一个数量级的幼年密西西比鳄(Alligator mississippiensis)中的缩放比例(359 克至 5.5 千克)。相比之下,呼气肌(腹横肌、腹直肌、髂肋肌),它们压缩躯干,具有更大的相对 PCSA,专门用于产生更大的力生成能力,而吸气肌(膈肌、尾端肌髂肋肌、坐骨耻骨),它们产生负内压,具有更大的相对肌纤维长度,适应更大的工作范围和收缩速度。在所检查的鳄鱼中,辅助膈肌的肌纤维长度呈正异速生长,增强了收缩能力,与该肌肉在陆地运动中根据能量需求调节潮气量和呼吸频率的能力一致。髂肋肌,一种辅助呼气肌,其肌纤维长度和质量也呈正异速生长。耻骨下腹壁的所有辅助肌肉的 PCSA 均呈正异速生长,这将增强它们的力生成能力。相反,基础四足呼气泵(腹横肌)呈等长缩放,这可能表明随着个体发育,对该肌肉的依赖程度降低。总的来说,这些发现支持现有的轶事证据,即鳄鱼随着体型的增大而改变呼吸力学。此外,膈肌的功能特化和腰椎区域体壁的顺应性可能有助于鳄鱼的低成本呼吸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c828/8602021/588b132bdeb8/JOA-239-1273-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验