University of Monastir, Laboratory of Electronics and Microelectronics, Faculty of Sciences of Monastir, Monastir, Tunisia.
University of Gabes, Higher Institute of Computer Science and Multimedia of Gabes, Gabes, Tunisia.
Comput Intell Neurosci. 2021 Jul 7;2021:9912839. doi: 10.1155/2021/9912839. eCollection 2021.
With the rapid advancement in many multimedia applications, such as video gaming, computer vision applications, and video streaming and surveillance, video quality remains an open challenge. Despite the existence of the standardized video quality as well as high definition (HD) and ultrahigh definition (UHD), enhancing the quality for the video compression standard will improve the video streaming resolution and satisfy end user's quality of service (QoS). Versatile video coding (VVC) is the latest video coding standard that achieves significant coding efficiency. VVC will help spread high-quality video services and emerging applications, such as high dynamic range (HDR), high frame rate (HFR), and omnidirectional 360-degree multimedia compared to its predecessor high efficiency video coding (HEVC). Given its valuable results, the emerging field of deep learning is attracting the attention of scientists and prompts them to solve many contributions. In this study, we investigate the deep learning efficiency to the new VVC standard in order to improve video quality. However, in this work, we propose a wide-activated squeeze-and-excitation deep convolutional neural network (WSE-DCNN) technique-based video quality enhancement for VVC. Thus, the VVC conventional in-loop filtering will be replaced by the suggested WSE-DCNN technique that is expected to eliminate the compression artifacts in order to improve visual quality. Numerical results demonstrate the efficacy of the proposed model achieving approximately -2.85%, -8.89%, and -10.05% BD-rate reduction of the luma () and both chroma (, ) components, respectively, under random access profile.
随着视频游戏、计算机视觉应用、视频流和监控等众多多媒体应用的快速发展,视频质量仍然是一个开放的挑战。尽管存在标准化视频质量以及高清 (HD) 和超高清 (UHD),但提高视频压缩标准的质量将提高视频流分辨率并满足最终用户的服务质量 (QoS)。多功能视频编码 (VVC) 是最新的视频编码标准,可实现显著的编码效率。VVC 将有助于传播高质量的视频服务和新兴应用,例如高动态范围 (HDR)、高帧率 (HFR) 和全向 360 度多媒体,与前代高效视频编码 (HEVC) 相比。鉴于其有价值的成果,新兴的深度学习领域引起了科学家的关注,并促使他们解决许多贡献。在这项研究中,我们研究了深度学习对新 VVC 标准的效率,以提高视频质量。然而,在这项工作中,我们提出了一种基于宽激活挤压激励深度卷积神经网络 (WSE-DCNN) 技术的 VVC 视频质量增强技术。因此,建议的 WSE-DCNN 技术将取代 VVC 传统的环路内滤波,预计该技术将消除压缩伪影,以提高视觉质量。数值结果表明,所提出的模型在随机访问配置下,分别在亮度分量 (luma) 和两个色度分量 (, ) 上实现了约 -2.85%、-8.89%和-10.05%的 BD 率减少,具有较高的有效性。