Suppr超能文献

经导管主动脉瓣置换术后需要永久起搏器的高危患者的生物力学识别

Biomechanical Identification of High-Risk Patients Requiring Permanent Pacemaker After Transcatheter Aortic Valve Replacement.

作者信息

Zhang Guangming, Liu Rong, Pu Min, Zhou Xiaobo

机构信息

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States.

Department of Internal Medicine/Cardiology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.

出版信息

Front Bioeng Biotechnol. 2021 Jul 9;9:615090. doi: 10.3389/fbioe.2021.615090. eCollection 2021.

Abstract

BACKGROUND

Cardiac conduction disturbance requiring new permanent pacemaker implantation (PPI) is an important complication of TAVR that has been associated with increased mortality. It is extremely challenging to optimize the valve size alone to prevent a complete atrioventricular block (AVB).

METHODS

In this study, we randomly took 48 patients who underwent TAVR and had been followed for at least 2 years to assess the risk of AVB. CT images of 48 patients with TAVR were analyzed using three-dimensional (3D) anatomical models of the aortic valve apparatus. The stresses were formulated according to loading force and tissue properties. Support vector regression (SVR) was used to model the relationship between AVB risk and biomechanical stresses. To avoid AVB, overlapping regions on the prosthetic valve where AV bundle passes will be removed as cylindrical sector with the angle θ. Thus, the optimization of the valve shape will be predicted with the joint optimization of the θ and valve size R.

RESULTS

The average AVB risk prediction accuracy was 83.33% in the range from 0.8-0.85 with 95% CI for all cases; specifically, 85.71% for Group A (no AVB), and 80.0% for Group B (undergoing AVB after the TAVR).

CONCLUSIONS

This model can estimate the optimal valve size and shape to avoid the risk of AVB after TAVR. This optimization may eliminate the excessive stresses to keep the normal function of both AV bundle and valve leaflets, leading to a favorable clinical outcome. The combination of biomechanical properties and machine learning method substantially improved prediction of surgical results.

摘要

背景

需要植入新的永久性起搏器(PPI)的心脏传导障碍是经导管主动脉瓣置换术(TAVR)的一种重要并发症,与死亡率增加相关。仅优化瓣膜尺寸以预防完全性房室传导阻滞(AVB)极具挑战性。

方法

在本研究中,我们随机选取了48例接受TAVR且随访至少2年的患者,以评估AVB风险。使用主动脉瓣装置的三维(3D)解剖模型分析48例TAVR患者的CT图像。根据加载力和组织特性制定应力。支持向量回归(SVR)用于建立AVB风险与生物力学应力之间的关系模型。为避免AVB,将人工瓣膜上房室束通过的重叠区域作为角度为θ的圆柱形扇形去除。因此,将通过θ和瓣膜尺寸R的联合优化来预测瓣膜形状的优化。

结果

所有病例在0.8 - 0.85范围内的平均AVB风险预测准确率为83.33%,95%置信区间;具体而言,A组(无AVB)为85.71%,B组(TAVR后发生AVB)为80.0%。

结论

该模型可估计最佳瓣膜尺寸和形状,以避免TAVR后AVB的风险。这种优化可消除过大应力,以保持房室束和瓣膜小叶的正常功能,从而带来良好的临床结果。生物力学特性与机器学习方法的结合显著改善了手术结果的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f81/8299755/c74988df86f6/fbioe-09-615090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验