IEEE Trans Image Process. 2021;30:6801-6814. doi: 10.1109/TIP.2021.3098245. Epub 2021 Jul 30.
In this paper, a competitive no-reference metric is proposed to assess the perceptive quality of screen content images (SCIs), which uses the human visual edge model and AdaBoosting neural network. Inspired by the existing theory that the edge information which reflects the visual quality of SCI is effectively captured by the human visual difference of the Gaussian (DOG) model, we compute two types of multi-scale edge maps via the DOG operator firstly. Specifically, two types of edge maps contain contour and edge information respectively. Then after locally normalizing edge maps, L -moments distribution estimation is utilized to fit their DOG coefficients, and the fitted L -moments parameters can be regarded as edge features. Finally, to obtain the final perceptive quality score, we use an AdaBoosting back-propagation neural network (ABPNN) to map the quality-aware features to the perceptual quality score of SCIs. The reason why the ABPNN is regarded as the appropriate approach for the visual quality assessment of SCIs is that we abandon the regression network with a shallow structure, try a regression network with a deep architecture, and achieve a good generalization ability. The proposed method delivers highly competitive performance and shows high consistency with the human visual system (HVS) on the public SCI-oriented databases.
本文提出了一种竞争性的无参考质量评价指标,用于评估屏幕内容图像(SCI)的感知质量,该指标使用了人类视觉边缘模型和 AdaBoosting 神经网络。受现有理论的启发,该理论认为反映 SCI 视觉质量的边缘信息可以通过人类视觉高斯差分(DOG)模型有效地捕获,我们首先通过 DOG 算子计算两种类型的多尺度边缘图。具体来说,两种类型的边缘图分别包含轮廓和边缘信息。然后,在对边缘图进行局部归一化后,利用 L-矩分布估计来拟合它们的 DOG 系数,拟合的 L-矩参数可以视为边缘特征。最后,为了获得最终的感知质量评分,我们使用 AdaBoosting 反向传播神经网络(ABPNN)将质量感知特征映射到 SCI 的感知质量评分。之所以将 ABPNN 视为 SCI 视觉质量评估的合适方法,是因为我们放弃了浅层结构的回归网络,尝试了具有深层架构的回归网络,并实现了良好的泛化能力。该方法在公共 SCI 导向数据库上的表现具有很强的竞争力,与人类视觉系统(HVS)具有高度一致性。