Suppr超能文献

TxtE 硝化途径的铁-过氧中间体抵抗还原,促进其与一氧化氮的反应。

The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide.

机构信息

Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States.

Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, 1345 Center Drive, Room P6-27, Gainesville, Florida 32610, United States.

出版信息

Biochemistry. 2021 Aug 10;60(31):2436-2446. doi: 10.1021/acs.biochem.1c00416. Epub 2021 Jul 28.

Abstract

TxtE is a cytochrome P450 (CYP) homologue that mediates the nitric oxide (NO)-dependent direct nitration of l-tryptophan (Trp) to form 4-nitro-l-tryptophan (4-NO-Trp). A recent report showed evidence that TxtE activity requires NO to react with a ferric-superoxo intermediate. Given this minimal mechanism, it is not clear how TxtE avoids Trp hydroxylation, a mechanism that also traverses the ferric-superoxo intermediate. To provide insight into canonical CYP intermediates that TxtE can access, electron coupling efficiencies to form 4-NO-Trp under single- or limited-turnover conditions were measured and compared to steady-state efficiencies. As previously reported, Trp nitration by TxtE is supported by the engineered self-sufficient variant, TB14, as well as by reduced putidaredoxin. Ferrous (Fe) TxtE exhibits excellent electron coupling (70%), which is 50-fold higher than that observed under turnover conditions. In addition, two- or four-electron reduced TB14 exhibits electron coupling (∼6%) that is 2-fold higher than that of one-electron reduced TB14 (3%). The combined results suggest (1) autoxidation is the sole TxtE uncoupling pathway and (2) the TxtE ferric-superoxo intermediate cannot be reduced by these electron transfer partners. The latter conclusion is further supported by ultraviolet-visible absorption spectral time courses showing neither spectral nor kinetic evidence for reduction of the ferric-superoxo intermediate. We conclude that resistance of the ferric-superoxo intermediate to reduction is a key feature of TxtE that increases the lifetime of the intermediate and enables its reaction with NO and efficient nitration activity.

摘要

TxtE 是细胞色素 P450(CYP)同系物,介导一氧化氮(NO)依赖性的 l-色氨酸(Trp)直接硝化,形成 4-硝基-l-色氨酸(4-NO-Trp)。最近的一份报告表明,TxtE 活性需要 NO 与铁-过氧亚硝基中间物反应。鉴于这种最小的机制,尚不清楚 TxtE 如何避免 Trp 羟化,这种机制也穿过铁-过氧亚硝基中间物。为了深入了解 TxtE 可以进入的典型 CYP 中间物,在单轮或有限轮次条件下测量了形成 4-NO-Trp 的电子偶联效率,并与稳态效率进行了比较。如前所述,TxtE 对 Trp 的硝化作用得到了工程自给变体 TB14 以及还原型 putidaredoxin 的支持。亚铁(Fe)TxtE 表现出极好的电子偶联(70%),比在轮次条件下观察到的电子偶联高 50 倍。此外,二电子或四电子还原的 TB14 表现出的电子偶联(∼6%)比一电子还原的 TB14(3%)高 2 倍。综合结果表明:(1)自氧化是 TxtE 唯一的解偶联途径;(2)这些电子转移伴侣不能还原 TxtE 的铁-过氧亚硝基中间物。这一结论进一步得到紫外可见吸收光谱时间过程的支持,该过程既没有显示中间物还原的光谱证据,也没有显示中间物还原的动力学证据。我们得出的结论是,铁-过氧亚硝基中间物对还原的抗性是 TxtE 的一个关键特征,它增加了中间物的寿命,使其能够与 NO 反应并具有高效的硝化活性。

相似文献

1
The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide.
Biochemistry. 2021 Aug 10;60(31):2436-2446. doi: 10.1021/acs.biochem.1c00416. Epub 2021 Jul 28.
2
Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate.
J Am Chem Soc. 2020 Sep 16;142(37):15764-15779. doi: 10.1021/jacs.0c05070. Epub 2020 Sep 2.
3
Direct aromatic nitration by bacterial P450 enzymes.
Methods Enzymol. 2023;693:307-337. doi: 10.1016/bs.mie.2023.09.008. Epub 2023 Oct 12.
5
Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion.
Chembiochem. 2021 Jul 1;22(13):2262-2265. doi: 10.1002/cbic.202100145. Epub 2021 May 7.
6
Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE.
Chembiochem. 2014 Oct 13;15(15):2259-67. doi: 10.1002/cbic.201402241. Epub 2014 Sep 2.
8
Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis.
Nat Chem Biol. 2012 Oct;8(10):814-6. doi: 10.1038/nchembio.1048.
9
Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11.
Biochemistry. 2014 Oct 7;53(39):6161-72. doi: 10.1021/bi500710e. Epub 2014 Sep 19.
10
A Cytochrome P450 TxtE Model System with Mechanistic and Theoretical Evidence for a Heme Peroxynitrite Active Species.
Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202409430. doi: 10.1002/anie.202409430. Epub 2024 Oct 30.

引用本文的文献

1
Molecular Basis for Peptide Nitration by a Novel Cytochrome P450 Enzyme in RiPP Biosynthesis.
ACS Catal. 2025 Jun 3;15(12):10391-10404. doi: 10.1021/acscatal.5c01932. eCollection 2025 Jun 20.
2
Biocatalytic Strategies for Nitration Reactions.
JACS Au. 2024 Dec 16;5(1):28-41. doi: 10.1021/jacsau.4c00994. eCollection 2025 Jan 27.
3
Secondary Sphere Lewis Acid Activated Heme Superoxo Adducts Mimic Crucial Non-Covalent Interactions in IDO/TDO Heme Dioxygenases.
Chemistry. 2024 Dec 5;30(68):e202402310. doi: 10.1002/chem.202402310. Epub 2024 Nov 12.
4
Direct aromatic nitration by bacterial P450 enzymes.
Methods Enzymol. 2023;693:307-337. doi: 10.1016/bs.mie.2023.09.008. Epub 2023 Oct 12.
5
A Ferric-Superoxide Intermediate Initiates P450-Catalyzed Cyclic Dipeptide Dimerization.
J Am Chem Soc. 2023 Sep 6;145(35):19256-19264. doi: 10.1021/jacs.3c04542. Epub 2023 Aug 23.
6
Insights into Substrate Recognition by the Unusual Nitrating Enzyme RufO.
ACS Chem Biol. 2023 Aug 18;18(8):1713-1718. doi: 10.1021/acschembio.3c00328. Epub 2023 Aug 9.

本文引用的文献

1
Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate.
J Am Chem Soc. 2020 Sep 16;142(37):15764-15779. doi: 10.1021/jacs.0c05070. Epub 2020 Sep 2.
2
Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts.
J Am Chem Soc. 2020 Jun 10;142(23):10343-10357. doi: 10.1021/jacs.9b12859. Epub 2020 Jun 1.
3
Mechanisms of Cytochrome P450-Catalyzed Oxidations.
ACS Catal. 2018 Dec 7;8(12):10964-10976. doi: 10.1021/acscatal.8b03401. Epub 2018 Oct 18.
4
PLANT PATHOGENICITY IN THE GENUS STREPTOMYCES.
Plant Dis. 1997 Aug;81(8):836-846. doi: 10.1094/PDIS.1997.81.8.836.
5
The emergence of nitric oxide in the biosynthesis of bacterial natural products.
Curr Opin Chem Biol. 2019 Apr;49:130-138. doi: 10.1016/j.cbpa.2018.11.007. Epub 2019 Jan 11.
6
Unprecedented Cyclization Catalyzed by a Cytochrome P450 in Benzastatin Biosynthesis.
J Am Chem Soc. 2018 May 30;140(21):6631-6639. doi: 10.1021/jacs.8b02769. Epub 2018 May 21.
7
High-Yield Production of Herbicidal Thaxtomins and Thaxtomin Analogs in a Nonpathogenic Streptomyces Strain.
Appl Environ Microbiol. 2018 May 17;84(11). doi: 10.1128/AEM.00164-18. Print 2018 Jun 1.
8
Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins.
Chem Rev. 2018 Mar 14;118(5):2491-2553. doi: 10.1021/acs.chemrev.7b00373. Epub 2017 Dec 29.
10
Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions.
Curr Opin Biotechnol. 2017 Oct;47:102-111. doi: 10.1016/j.copbio.2017.06.005. Epub 2017 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验