Suppr超能文献

一种基于解剖学约束的 V1 简单细胞模型预测了推挽和广泛抑制的共存。

An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104.

Institute of Neuroscience (Paris-Saclay Institute of Neuroscience, Unit of Neuroscience, Information, and Complexity), Paris-Saclay University, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.

出版信息

J Neurosci. 2021 Sep 15;41(37):7797-7812. doi: 10.1523/JNEUROSCI.0928-20.2021. Epub 2021 Jul 28.

Abstract

The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts. Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.

摘要

猫初级视皮层 (V1) 中简单细胞的兴奋性和抑制性突触输入的空间组织和动态相互作用仍然提出了以下矛盾问题:(1) 用漂移光栅刺激 V1 中的简单细胞支持空间分离的兴奋性和抑制性输入集合的布线模式,这些输入集合通过刺激对比度极性以相反的方式激活;(2) 相比之下,使用闪烁条的细胞内研究表明,尽管 ON 和 OFF 兴奋性输入确实是分离的,但抑制性输入跨越整个 RF,无论输入对比度极性如何。在这里,我们提出了一个嵌入 V1 样网络中的简单细胞的生物详细计算模型,该模型解决了这一看似矛盾的问题。我们参数化地改变了基于 RF 相关的兴奋性和抑制性突触的偏差,发现兴奋性神经元的适度偏差,即与具有相关 RF 的其他神经元形成突触,以及抑制性神经元的较弱偏差,即与具有反相关 RF 的其他神经元形成突触,可以解释在两种刺激模式下的电导输入、突触后膜电位和尖峰序列动力学。这项计算研究表明,相同的结构模型可以再现不同视觉环境下观察到的视觉处理的功能多样性。确定皮质电路中编码特定功能的通用连接动机对于理解皮质中的计算至关重要。间接证据表明,在高等哺乳动物的 V1 中存在基于相关性的连接模式偏见,其中兴奋性和抑制性神经元分别优先与具有相关和反相关 RF 的神经元形成突触。最近的一项细胞内研究对这种推拉假说提出了质疑,未能在整个 RF 中找到兴奋和抑制之间的空间反相关性模式。我们在这里提出了一个 V1 的尖峰模型,该模型整合了相关的解剖和生理约束,并表明基于相关性的连接具有更灵活的模式,选择性调节兴奋和拓宽抑制作用,足以解释为不同刺激类别的获得的功能描述的多样性。

相似文献

1
An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.
J Neurosci. 2021 Sep 15;41(37):7797-7812. doi: 10.1523/JNEUROSCI.0928-20.2021. Epub 2021 Jul 28.
2
Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.
J Neurosci. 2015 Aug 5;35(31):11081-93. doi: 10.1523/JNEUROSCI.5246-14.2015.
3
Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased.
J Neurosci. 2018 Jan 17;38(3):595-612. doi: 10.1523/JNEUROSCI.2099-17.2017. Epub 2017 Dec 1.
4
Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
J Neurosci. 2020 Dec 9;40(50):9634-9649. doi: 10.1523/JNEUROSCI.0276-20.2020. Epub 2020 Nov 9.
5
Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1.
Front Neural Circuits. 2016 May 11;10:37. doi: 10.3389/fncir.2016.00037. eCollection 2016.
6
Model circuit of spiking neurons generating directional selectivity in simple cells.
J Neurophysiol. 1996 Apr;75(4):1515-45. doi: 10.1152/jn.1996.75.4.1515.
7
Synaptic Correlates of Low-Level Perception in V1.
J Neurosci. 2016 Apr 6;36(14):3925-42. doi: 10.1523/JNEUROSCI.4492-15.2016.
8
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
J Neurosci. 2011 Aug 24;31(34):12339-50. doi: 10.1523/JNEUROSCI.2039-11.2011.
9
Receptive field structure varies with layer in the primary visual cortex.
Nat Neurosci. 2005 Mar;8(3):372-9. doi: 10.1038/nn1404. Epub 2005 Feb 13.

引用本文的文献

1
Model-based characterization of the selectivity of neurons in primary visual cortex.
J Neurophysiol. 2022 Aug 1;128(2):350-363. doi: 10.1152/jn.00416.2021. Epub 2022 Jun 29.

本文引用的文献

1
Visual physiology of the layer 4 cortical circuit in silico.
PLoS Comput Biol. 2018 Nov 12;14(11):e1006535. doi: 10.1371/journal.pcbi.1006535. eCollection 2018 Nov.
2
Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex.
Nature. 2018 Aug;560(7716):97-101. doi: 10.1038/s41586-018-0354-1. Epub 2018 Jul 25.
3
Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased.
J Neurosci. 2018 Jan 17;38(3):595-612. doi: 10.1523/JNEUROSCI.2099-17.2017. Epub 2017 Dec 1.
4
Intracellular, , Dynamics of Thalamocortical Synapses in Visual Cortex.
J Neurosci. 2017 May 24;37(21):5250-5262. doi: 10.1523/JNEUROSCI.3370-16.2017. Epub 2017 Apr 24.
5
GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks.
Neuron. 2017 Mar 8;93(5):1058-1065.e4. doi: 10.1016/j.neuron.2017.02.035.
6
Orientation Selectivity from Very Sparse LGN Inputs in a Comprehensive Model of Macaque V1 Cortex.
J Neurosci. 2016 Dec 7;36(49):12368-12384. doi: 10.1523/JNEUROSCI.2603-16.2016.
7
Inferring cortical function in the mouse visual system through large-scale systems neuroscience.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7337-44. doi: 10.1073/pnas.1512901113.
8
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex.
Nat Neurosci. 2016 Aug;19(8):1003-9. doi: 10.1038/nn.4323. Epub 2016 Jun 13.
9
Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1.
Front Neural Circuits. 2016 May 11;10:37. doi: 10.3389/fncir.2016.00037. eCollection 2016.
10
Principles underlying sensory map topography in primary visual cortex.
Nature. 2016 May 5;533(7601):52-7. doi: 10.1038/nature17936. Epub 2016 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验