文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肌动蛋白组装的自抑制夹限制并指导突触内吞作用。

An autoinhibitory clamp of actin assembly constrains and directs synaptic endocytosis.

机构信息

Department of Biology, Brandeis University, Walltham, United States.

Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.

出版信息

Elife. 2021 Jul 29;10:e69597. doi: 10.7554/eLife.69597.


DOI:10.7554/eLife.69597
PMID:34324418
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8321554/
Abstract

Synaptic membrane-remodeling events such as endocytosis require force-generating actin assembly. The endocytic machinery that regulates these actin and membrane dynamics localizes at high concentrations to large areas of the presynaptic membrane, but actin assembly and productive endocytosis are far more restricted in space and time. Here we describe a mechanism whereby autoinhibition clamps the presynaptic endocytic machinery to limit actin assembly to discrete functional events. We found that collective interactions between the endocytic proteins Nwk/FCHSD2, Dap160/intersectin, and WASp relieve Nwk autoinhibition and promote robust membrane-coupled actin assembly in vitro. Using automated particle tracking to quantify synaptic actin dynamics in vivo, we discovered that Nwk-Dap160 interactions constrain spurious assembly of WASp-dependent actin structures. These interactions also promote synaptic endocytosis, suggesting that autoinhibition both clamps and primes the synaptic endocytic machinery, thereby constraining actin assembly to drive productive membrane remodeling in response to physiological cues.

摘要

突触膜重塑事件,如内吞作用,需要产生力的肌动蛋白组装。调节这些肌动蛋白和膜动力学的内吞机制在高浓度下定位于突触前膜的大片区域,但肌动蛋白组装和有效的内吞作用在空间和时间上受到更严格的限制。在这里,我们描述了一种机制,通过该机制,自身抑制将突触内吞机制固定,以将肌动蛋白组装限制在离散的功能事件上。我们发现,内吞蛋白 Nwk/FCHSD2、Dap160/ intersectin 和 WASp 之间的集体相互作用解除了 Nwk 的自身抑制,并促进了体外强大的膜偶联肌动蛋白组装。使用自动粒子跟踪来量化体内突触肌动蛋白动力学,我们发现 Nwk-Dap160 相互作用限制了依赖 WASp 的肌动蛋白结构的虚假组装。这些相互作用还促进了突触内吞作用,这表明自身抑制既固定又启动突触内吞机制,从而将肌动蛋白组装限制为响应生理信号驱动有性的膜重塑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/6e52088545ec/elife-69597-fig7-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/9b2318a7473e/elife-69597-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/a15a52fa4dca/elife-69597-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/0ae73260e55f/elife-69597-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/3601cb60619d/elife-69597-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/4abd93b6345b/elife-69597-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/ba1442b3aa1e/elife-69597-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/9a8678d57b83/elife-69597-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/6032659d62fa/elife-69597-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/ac1334285cae/elife-69597-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/c91bf132698c/elife-69597-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/2a033f23329f/elife-69597-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/0fbd452a997b/elife-69597-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/7b5b8850b6db/elife-69597-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/c98343176638/elife-69597-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/20d6a8e5c7f4/elife-69597-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/33ee830d2b74/elife-69597-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/6e52088545ec/elife-69597-fig7-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/9b2318a7473e/elife-69597-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/a15a52fa4dca/elife-69597-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/0ae73260e55f/elife-69597-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/3601cb60619d/elife-69597-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/4abd93b6345b/elife-69597-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/ba1442b3aa1e/elife-69597-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/9a8678d57b83/elife-69597-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/6032659d62fa/elife-69597-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/ac1334285cae/elife-69597-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/c91bf132698c/elife-69597-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/2a033f23329f/elife-69597-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/0fbd452a997b/elife-69597-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/7b5b8850b6db/elife-69597-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/c98343176638/elife-69597-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/20d6a8e5c7f4/elife-69597-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/33ee830d2b74/elife-69597-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/8321554/6e52088545ec/elife-69597-fig7-figsupp3.jpg

相似文献

[1]
An autoinhibitory clamp of actin assembly constrains and directs synaptic endocytosis.

Elife. 2021-7-29

[2]
Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth.

J Neurosci. 2008-8-13

[3]
Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development.

J Cell Biol. 2007-7-16

[4]
Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth.

Neuron. 2004-7-22

[5]
Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane.

J Physiol. 2013-12-2

[6]
Drosophila endosomal proteins hook and deep orange regulate synapse size but not synaptic vesicle recycling.

J Neurobiol. 2000-11-5

[7]
An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction.

J Neurosci. 2015-11-4

[8]
The CHD Protein, Kismet, is Important for the Recycling of Synaptic Vesicles during Endocytosis.

Sci Rep. 2019-12-18

[9]
Nervous wreck interacts with thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth.

Neuron. 2008-5-22

[10]
Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis.

Neuron. 2004-7-22

引用本文的文献

[1]
Computer Simulations Show That Liquid-Liquid Phase Separation Enhances Self-Assembly.

ACS Nano. 2025-8-26

[2]
Nonmuscle myosin II regulates presynaptic actin and neuronal mechanobiology in Drosophila.

J Cell Biol. 2025-9-1

[3]
Intersectin and endophilin condensates prime synaptic vesicles for release site replenishment.

Nat Neurosci. 2025-7-8

[4]
Beyond Clathrin: Decoding the Mechanism of Ultrafast Endocytosis.

Physiology (Bethesda). 2025-9-1

[5]
Endosomal actin branching, fission, and receptor recycling require FCHSD2 recruitment by MICAL-L1.

Mol Biol Cell. 2024-11-1

[6]
Pathogenic Huntingtin aggregates alter actin organization and cellular stiffness resulting in stalled clathrin-mediated endocytosis.

Elife. 2024-10-9

[7]
Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin.

Elife. 2024-3-19

[8]
Non-muscle myosin II regulates presynaptic actin assemblies and neuronal mechanobiology in .

bioRxiv. 2025-1-26

[9]
Presynapses contain distinct actin nanostructures.

J Cell Biol. 2023-10-2

[10]
Nuclear Actin Polymerization Regulates Cell Epithelial-Mesenchymal Transition.

Adv Sci (Weinh). 2023-10

本文引用的文献

[1]
FCHSD2 controls oncogenic ERK1/2 signaling outcome by regulating endocytic trafficking.

PLoS Biol. 2020-7-17

[2]
A comparative analysis of the mobility of 45 proteins in the synaptic bouton.

EMBO J. 2020-8-17

[3]
Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis.

Elife. 2020-1-17

[4]
Intersectin-Mediated Clearance of SNARE Complexes Is Required for Fast Neurotransmission.

Cell Rep. 2020-1-14

[5]
A Tripartite Interaction Among the Calcium Channel α- and β-Subunits and F-Actin Increases the Readily Releasable Pool of Vesicles and Its Recovery After Depletion.

Front Cell Neurosci. 2019-5-3

[6]
Stoichiometry controls activity of phase-separated clusters of actin signaling proteins.

Science. 2019-3-8

[7]
BMP-dependent synaptic development requires Abi-Abl-Rac signaling of BMP receptor macropinocytosis.

Nat Commun. 2019-2-8

[8]
Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis.

Proc Natl Acad Sci U S A. 2018-9-24

[9]
Synaptic Vesicle Endocytosis in Different Model Systems.

Front Cell Neurosci. 2018-6-28

[10]
Characterization of developmental and molecular factors underlying release heterogeneity at synapses.

Elife. 2018-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索