Suppr超能文献

利用人工神经网络提高冠心病风险预测能力。

Improvement in the Prediction of Coronary Heart Disease Risk by Using Artificial Neural Networks.

机构信息

Ono Academic College, Kiryat Ono, Israel (Dr O. Goldman); Ariel University, Kiryat Hamada Ariel, Israel (Dr Raphaeli); Bar Ilan University, Ramat Gan, Israel (Mr E. Goldman); and Tel Aviv University, Ramat Aviv, Israel (Dr Leshno).

出版信息

Qual Manag Health Care. 2021;30(4):244-250. doi: 10.1097/QMH.0000000000000309.

Abstract

BACKGROUND AND OBJECTIVES

Cardiovascular diseases, such as coronary heart disease (CHD), are the main cause of mortality and morbidity worldwide. Although CHD cannot be entirely predicted by classic risk factors, it is preventable. Therefore, predicting CHD risk is crucial to clinical cardiology research, and the development of innovative methods for predicting CHD risk is of great practical interest. The Framingham risk score (FRS) is one of the most frequently implemented risk models. However, recent advances in the field of analytics may enhance the prediction of CHD risk beyond the FRS. Here, we propose a model based on an artificial neural network (ANN) for predicting CHD risk with respect to the Framingham Heart Study (FHS) dataset. The performance of this model was compared to that of the FRS.

METHODS

A sample of 3066 subjects from the FHS offspring cohort was subjected to an ANN. A multilayer perceptron ANN architecture was used and the lift, gains, receiver operating characteristic (ROC), and precision-recall predicted by the ANN were compared with those of the FRS.

RESULTS

The lift and gain curves of the ANN model outperformed those of the FRS model in terms of top percentiles. The ROC curve showed that, for higher risk scores, the ANN model had higher sensitivity and higher specificity than those of the FRS model, although its area under the curve (AUC) was lower. For the precision-recall measures, the ANN generated significantly better results than the FRS with a higher AUC.

CONCLUSIONS

The findings suggest that the ANN model is a promising approach for predicting CHD risk and a good screening procedure to identify high-risk subjects.

摘要

背景和目的

心血管疾病,如冠心病(CHD),是全球死亡和发病的主要原因。虽然 CHD 不能完全通过经典危险因素来预测,但它是可以预防的。因此,预测 CHD 风险对临床心脏病学研究至关重要,开发预测 CHD 风险的创新方法具有重要的实际意义。Framingham 风险评分(FRS)是最常实施的风险模型之一。然而,分析领域的最新进展可能会提高Framingham 心脏研究(FHS)数据集的 CHD 风险预测能力。在这里,我们提出了一种基于人工神经网络(ANN)的模型,用于预测 Framingham 心脏研究(FHS)数据集的 CHD 风险。该模型的性能与 FRS 进行了比较。

方法

对 FHS 后代队列中的 3066 名受试者进行了 ANN 分析。使用多层感知器 ANN 架构,比较了 ANN 预测的提升值、增益、接收者操作特征(ROC)和精度-召回率与 FRS 的预测值。

结果

ANN 模型的提升值和增益曲线在最高百分位数方面优于 FRS 模型。ROC 曲线表明,对于更高的风险评分,ANN 模型的敏感性和特异性均高于 FRS 模型,尽管其曲线下面积(AUC)较低。对于精度-召回率指标,ANN 生成的结果明显优于 FRS,AUC 更高。

结论

研究结果表明,ANN 模型是一种有前途的预测 CHD 风险的方法,也是一种识别高危人群的良好筛选程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验