Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-shi, Aichi 466-8555, Japan.
ACS Biomater Sci Eng. 2021 Aug 9;7(8):3709-3717. doi: 10.1021/acsbiomaterials.1c00609. Epub 2021 Jul 30.
Improving hydrophilicity is a key factor for enhancing the biocompatibility of polymer surfaces. Nevertheless, previous studies have reported that poly(2-methoxyethyl acrylate) (PMEA) surfaces demonstrate markedly better biocompatibility than more hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) surfaces. In this work, the origins of the excellent biocompatibility of the PMEA surface are investigated using molecular dynamics (MD) simulations of simplified binary mixtures of acrylate/methacrylate trimers and organic solvents, with -nonane, 1,5-pentanediol, or 1-octanol serving as the probe organic foulants. The interactions between the acrylate/methacrylate trimers and solvent molecules were evaluated by calculating the radial distribution function (RDF), with the resulting curves indicating that the 2-methoxyethyl acrylate (MEA) trimer has a lower affinity for -nonane molecules than the 2-hydroxyethyl methacrylate (HEMA) trimer. This result agrees with the experimental consensus that the biocompatibility of PMEA surfaces is better than that of PHEMA surfaces, supporting the hypothesis that the affinity between an acrylate/methacrylate trimer and a foulant molecule in a simplified binary mixture is a significant factor in determining a surface's antifouling properties. The RDF curves obtained for the other two solvent systems exhibited behavior that further highlighted the advantages of the PMEA surfaces as biocompatible polymers. In addition, the validity of employing the second virial coefficient () as a predictor of antifouling properties was explored. The order of the values of different binary mixtures indicated that the MEA trimers have the lowest affinities with -nonane molecules, which confirms that although PMEA is more hydrophobic than PHEMA, it exhibits better biocompatibility. This analysis demonstrates that the MEA's weaker miscibility with nonpolar foulants contributes to the excellent biocompatibility of PMEA. Thus, is a promising criterion for assessing the miscibility between acrylate/methacrylate materials and nonpolar organic foulants, which indicates the potential for predicting the antifouling properties of acrylate/methacrylate polymer materials by evaluating the value of .
提高亲水性是增强聚合物表面生物相容性的关键因素。然而,先前的研究表明,聚(2-甲氧基乙基丙烯酸酯)(PMEA)表面表现出明显优于更亲水的聚(2-羟乙基甲基丙烯酸酯)(PHEMA)表面的生物相容性。在这项工作中,使用简化的丙烯酸盐/甲基丙烯酸盐三聚体和有机溶剂的二元混合物的分子动力学(MD)模拟来研究 PMEA 表面优异的生物相容性的起源,其中 - 壬烷、1,5-戊二醇或 1-辛醇作为探针有机污染物。通过计算径向分布函数(RDF)来评估丙烯酸盐/甲基丙烯酸盐三聚体和溶剂分子之间的相互作用,所得曲线表明 2-甲氧基乙基丙烯酸酯(MEA)三聚体对 - 壬烷分子的亲和力低于 2-羟乙基甲基丙烯酸酯(HEMA)三聚体。这一结果与实验共识一致,即 PMEA 表面的生物相容性优于 PHEMA 表面,支持这样的假设,即简化二元混合物中丙烯酸盐/甲基丙烯酸盐三聚体和污染物分子之间的亲和力是决定表面抗污性能的重要因素。对于其他两种溶剂体系获得的 RDF 曲线表现出的行为进一步突出了 PMEA 表面作为生物相容聚合物的优势。此外,还探讨了采用第二维里系数()作为预测抗污性能的指标的有效性。不同二元混合物的 值的顺序表明 MEA 三聚体与 - 壬烷分子的亲和力最低,这证实了尽管 PMEA 比 PHEMA 更疏水,但它表现出更好的生物相容性。该分析表明,MEA 与非极性污染物的较差混溶性有助于 PMEA 的出色生物相容性。因此,是评估丙烯酸盐/甲基丙烯酸盐材料与非极性有机污染物之间混溶性的有前途的标准,这表明通过评估值可以预测丙烯酸盐/甲基丙烯酸盐聚合物材料的抗污性能。