Department of Chemical Engineering, Polytechnique Montreal, Montreal H3S 1W9, QC, Canada; Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302 West Bengal, India.
Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India.
Sci Total Environ. 2021 Nov 20;796:149049. doi: 10.1016/j.scitotenv.2021.149049. Epub 2021 Jul 14.
This work outlines major critical physico-chemical parameters that play a key role in increasing the fixation of CO from coal-fired flue gas CO into green microalgae biomass. Nitrogen concentration, gas flow rate, initial medium pH, and incident light intensity were determined to be the most important process variables with significant impact on CO fixation. Therefore, NaNO (500-3000 mg L), pH (6.8-8.0), light (50-200 mol m s) and aeration (0.1-1.0 vvm) were varied to assess the biological assimilation potential of CO from the flue gas. The parameters that resulted in maximal CO fixation from raw flue gas, resulting in a maximum biomass density of 3.1 g L, were NaNO = 1500 mg L, pH =7.2-7.5, incident light intensity = 133.33 mol m s, and 0.5-0.75 vvm aeration without any cost-incurring flue gas pre-treatment step. The inductively coupled plasma-mass spectrometer (ICP-MS) was used to investigate heavy metals uptake from raw flue gas, and it was discovered that no net intake of trace metals had a significant influence on biomass production. The research lays the path for efficient large-scale microalgal cultivations for industrial uses, as well as bolstering the circular economy concept.
这项工作概述了在将燃煤烟气中的 CO 固定到绿色微藻生物质中时起关键作用的主要关键物理化学参数。氮浓度、气体流速、初始介质 pH 值和入射光强度被确定为对 CO 固定有重大影响的最重要工艺变量。因此,改变了 NaNO(500-3000mg/L)、pH(6.8-8.0)、光(50-200molm s)和曝气(0.1-1.0vvm),以评估 CO 从烟气中的生物同化潜力。导致从原始烟气中最大程度地固定 CO,从而使生物质密度达到 3.1g/L 的最大密度的参数为 NaNO=1500mg/L、pH=7.2-7.5、入射光强度=133.33molm s和 0.5-0.75vvm 曝气,而无需进行任何增加成本的烟气预处理步骤。电感耦合等离子体质谱仪(ICP-MS)用于研究从原始烟气中吸收重金属,发现痕量金属的净摄取对生物质生产没有重大影响。该研究为高效的大规模微藻培养铺平了道路,适用于工业用途,并增强了循环经济概念。