Suppr超能文献

一种对驱使足细胞脱离的物理力的数学估算。

A mathematical estimation of the physical forces driving podocyte detachment.

机构信息

Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.

Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.

出版信息

Kidney Int. 2021 Nov;100(5):1054-1062. doi: 10.1016/j.kint.2021.06.040. Epub 2021 Jul 30.

Abstract

Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.

摘要

足细胞丢失,可能是通过有活力的细胞脱离,是进行性肾小球疾病的一个标志。由于压力和流动导致的圆周壁应力和切向剪切应力,足细胞暴露于相当大的物理力下,这些力被认为导致足细胞耗竭。然而,由于缺乏定量功能和形态数据,肾小球疾病中体内物理力变化的估计受到阻碍。在这里,我们在人类疾病(遗传性晚期局灶性节段性肾小球硬化症)的小鼠模型中使用超分辨率数据和计算分析来计算足细胞损伤时机械应力的增加。在足细胞脱离的初始阶段,足突侧墙的横切剪切应力明显增加。因此,我们的研究强调了靶向肾小球血流动力学治疗肾小球疾病的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验