Liu Peng, Liu Jin-Pin, Sun Si-Jia, Gao Yun, Ai Yingjie, Chen Xiufei, Sun Yiping, Zhou Mengyu, Liu Yun, Xiong Yue, Yuan Hai-Xin
The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.
Front Cell Dev Biol. 2021 Jul 15;9:675424. doi: 10.3389/fcell.2021.675424. eCollection 2021.
A growing number of human diseases have been found to be associated with aberrant DNA methylation, including cancer. Mutations targeting genes encoding DNA methyltransferase (DNMT), TET family of DNA demethylases, and isocitrate dehydrogenase (IDH1, IDH2) that produce TET inhibitory metabolite, 2-hyoxyglutarate (2-HG), are found in more than half of acute myeloid leukemia (AML). To gain new insights into the regulation of DNA de/methylation and consequence of its alteration in cancer development, we searched for genes which are mutated in a manner that is linked with gene mutations involved in DNA de/methylation in multiple cancer types. We found that recurrent CBFB-MYH11 fusions, which result in the expression of fusion protein comprising core-binding factor β (CBFB) and myosin heavy chain 11 (MYH11) and are found in 6∼8% of AML patients, occur mutually exclusively with DNMT3A mutations. Tumors bearing CBFB-MYH11 fusion show DNA hypomethylation patterns similar to those with loss-of-function mutation of DNMT3A. Expression of CBFB-MYH11 fusion or inhibition of DNMT3A similarly impairs the methylation and expression of target genes of Runt related transcription factor 1 (RUNX1), a functional partner of CBFB. We demonstrate that RUNX1 directly interacts with DNMT3A and that CBFB-MYH11 fusion protein sequesters RUNX1 in the cytoplasm, thereby preventing RUNX1 from interacting with and recruiting DNMT3A to its target genes. Our results identify a novel regulation of DNA methylation and provide a molecular basis how CBFB-MYH11 fusion contributes to leukemogenesis.
越来越多的人类疾病被发现与异常的DNA甲基化有关,包括癌症。在超过一半的急性髓系白血病(AML)中发现了靶向编码DNA甲基转移酶(DNMT)、DNA去甲基化酶TET家族以及产生TET抑制性代谢物2-羟基戊二酸(2-HG)的异柠檬酸脱氢酶(IDH1、IDH2)的基因突变。为了深入了解DNA去甲基化/甲基化的调控及其在癌症发展中改变的后果,我们寻找了在多种癌症类型中以与参与DNA去甲基化/甲基化的基因突变相关的方式发生突变的基因。我们发现,复发性CBFB-MYH11融合(导致包含核心结合因子β(CBFB)和肌球蛋白重链11(MYH11)的融合蛋白表达,在6%至8%的AML患者中发现)与DNMT3A突变相互排斥。携带CBFB-MYH11融合的肿瘤表现出与DNMT3A功能丧失突变相似的DNA低甲基化模式。CBFB-MYH11融合的表达或DNMT3A的抑制同样会损害CBFB的功能伙伴Runt相关转录因子1(RUNX1)靶基因的甲基化和表达。我们证明RUNX1直接与DNMT3A相互作用,并且CBFB-MYH11融合蛋白将RUNX1隔离在细胞质中,从而阻止RUNX1与DNMT3A相互作用并将其招募到其靶基因。我们的结果确定了一种新的DNA甲基化调控机制,并为CBFB-MYH11融合如何促进白血病发生提供了分子基础。