Suppr超能文献

结晶和无定形基质对用于吸入纳米包载微粒的siRNA多聚体喷雾干燥成功的影响。

Impact of crystalline and amorphous matrices on successful spray drying of siRNA polyplexes for inhalation of nano-in-microparticles.

作者信息

Keil Tobias Wm, Zimmermann Christoph, Baldassi Domizia, Adams Friederike, Friess Wolfgang, Mehta Aditi, Merkel Olivia M

机构信息

Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany.

出版信息

Adv Ther (Weinh). 2021 May 7;4(6). doi: 10.1002/adtp.202100073. eCollection 2021 Jun.

Abstract

To develop stable and inhalable dry powder formulations with long shelf life, we spray dried polyplexes consisting of siRNA and a polyethylenimine based block copolymer in presence of mannitol or trehalose. We investigated the effect of inlet (T-In) and outlet (T-Out) temperature on the recovery of siRNA as well as adsorption effects within the tubing material. Choosing a low abrasion silicon tubing prevented siRNA loss due to adsorption. Mannitol and trehalose formulations preserved siRNA integrity regardless of excipient concentration and temperature at T-Out below the siRNA melting temperature. Trehalose formulations allowed full siRNA recovery whereas mannitol formulations resulted in spray drying induced losses of ~20 % siRNA and of 50-60 % polymer. Mannitol formulations showed optimal aerodynamic characteristics as confirmed by next generation impaction analysis based upon siRNA content. All spray dried formulations resulted in GFP silencing comparable or better than freshly prepared polyplexes. To test if the observed results could be transferred, formulations of siRNA and transferrin-PEI conjugates were spray dried, characterized and used to transfect primary human T cells ex vivo. Results confirmed successful silencing of the Th2 transcription factor GATA3 in primary CD4 T cells with spray dried formulations as a potential treatment for severe asthma.

摘要

为了开发具有长保质期的稳定且可吸入的干粉制剂,我们在甘露醇或海藻糖存在的情况下,对由小干扰RNA(siRNA)和基于聚乙烯亚胺的嵌段共聚物组成的多聚体进行喷雾干燥。我们研究了进口温度(T-In)和出口温度(T-Out)对siRNA回收率以及管材内吸附作用的影响。选择低磨损的硅胶管可防止因吸附导致的siRNA损失。甘露醇和海藻糖制剂可保持siRNA的完整性,无论赋形剂浓度如何,且出口温度低于siRNA的熔化温度。海藻糖制剂可实现siRNA的完全回收,而甘露醇制剂在喷雾干燥过程中会导致约20%的siRNA和50 - 60%的聚合物损失。基于siRNA含量的下一代撞击分析证实,甘露醇制剂具有最佳的空气动力学特性。所有喷雾干燥制剂导致的绿色荧光蛋白(GFP)沉默效果与新鲜制备的多聚体相当或更好。为了测试观察到的结果是否可以转化,对siRNA和转铁蛋白 - 聚乙烯亚胺(PEI)缀合物的制剂进行喷雾干燥、表征,并用于离体转染原代人T细胞。结果证实,喷雾干燥制剂可成功沉默原代CD4 T细胞中Th2转录因子GATA3,作为重症哮喘的潜在治疗方法。

相似文献

2
Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles.
Eur J Pharm Biopharm. 2019 Oct;143:61-69. doi: 10.1016/j.ejpb.2019.08.012. Epub 2019 Aug 21.
3
Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.
J Control Release. 2012 Jan 10;157(1):141-8. doi: 10.1016/j.jconrel.2011.08.011. Epub 2011 Aug 12.
4
Inhalable siRNA-loaded nano-embedded microparticles engineered using microfluidics and spray drying.
Eur J Pharm Biopharm. 2017 Nov;120:9-21. doi: 10.1016/j.ejpb.2017.08.001. Epub 2017 Aug 2.
5
Effect of thermal and shear stresses in the spray drying process on the stability of siRNA dry powders.
Int J Pharm. 2019 Jul 20;566:32-39. doi: 10.1016/j.ijpharm.2019.05.019. Epub 2019 May 8.
6
Leucine improves the aerosol performance of dry powder inhaler formulations of siRNA-loaded nanoparticles.
Int J Pharm. 2022 Jun 10;621:121758. doi: 10.1016/j.ijpharm.2022.121758. Epub 2022 Apr 26.
7
Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery.
J Control Release. 2022 Nov;351:137-150. doi: 10.1016/j.jconrel.2022.09.021. Epub 2022 Sep 22.
8
Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation.
J Control Release. 2010 Feb 25;142(1):138-45. doi: 10.1016/j.jconrel.2009.10.010. Epub 2009 Oct 22.
10
Understanding the impact of mannitol on physical stability and aerosolization of spray-dried protein powders for inhalation.
Int J Pharm. 2024 Jan 25;650:123698. doi: 10.1016/j.ijpharm.2023.123698. Epub 2023 Dec 9.

引用本文的文献

1
Intranasal and Pulmonary Lipid Nanoparticles for Gene Delivery: Turning Challenges into Opportunities.
Int J Nanomedicine. 2025 Jun 23;20:8085-8099. doi: 10.2147/IJN.S517385. eCollection 2025.
2
Inhaled non-viral delivery systems for RNA therapeutics.
Acta Pharm Sin B. 2025 May;15(5):2402-2430. doi: 10.1016/j.apsb.2025.03.033. Epub 2025 Mar 19.
3
Characterization of Spray-Dried Powders Using a Coated Alberta Idealized Nasal Inlet.
J Aerosol Med Pulm Drug Deliv. 2025 Feb;38(1):1-12. doi: 10.1089/jamp.2024.0029. Epub 2025 Jan 13.
4
New insights for the development of efficient DNA vaccines.
Microb Biotechnol. 2024 Nov;17(11):e70053. doi: 10.1111/1751-7915.70053.
5
Dry powder formulations of hyperimmune serum.
Drug Deliv Transl Res. 2025 Apr;15(4):1330-1341. doi: 10.1007/s13346-024-01678-8. Epub 2024 Jul 31.
7
Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency.
Adv Sci (Weinh). 2024 May;11(18):e2309748. doi: 10.1002/advs.202309748. Epub 2024 Mar 9.
8
Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis.
Small. 2024 May;20(22):e2308775. doi: 10.1002/smll.202308775. Epub 2023 Dec 21.
9
Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases.
Acta Pharm Sin B. 2023 Apr;13(4):1400-1428. doi: 10.1016/j.apsb.2022.07.010. Epub 2022 Jul 19.
10
Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases.
Expert Opin Drug Deliv. 2023 Apr;20(4):471-487. doi: 10.1080/17425247.2023.2185220. Epub 2023 Mar 12.

本文引用的文献

3
Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles.
Eur J Pharm Biopharm. 2019 Oct;143:61-69. doi: 10.1016/j.ejpb.2019.08.012. Epub 2019 Aug 21.
5
Effect of thermal and shear stresses in the spray drying process on the stability of siRNA dry powders.
Int J Pharm. 2019 Jul 20;566:32-39. doi: 10.1016/j.ijpharm.2019.05.019. Epub 2019 May 8.
6
Comparison of ice fog methods and monitoring of controlled nucleation success after freeze-drying.
Int J Pharm. 2019 Mar 10;558:18-28. doi: 10.1016/j.ijpharm.2018.12.056. Epub 2018 Dec 28.
7
Patisiran: First Global Approval.
Drugs. 2018 Oct;78(15):1625-1631. doi: 10.1007/s40265-018-0983-6.
8
Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation.
Int J Pharm. 2018 Dec 1;552(1-2):67-75. doi: 10.1016/j.ijpharm.2018.09.045. Epub 2018 Sep 19.
9
A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody.
J Pharm Sci. 2018 Nov;107(11):2748-2754. doi: 10.1016/j.xphs.2018.07.019. Epub 2018 Jul 25.
10
Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
J Pharm Sci. 2018 Oct;107(10):2538-2543. doi: 10.1016/j.xphs.2018.05.023. Epub 2018 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验