Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid 28049, Spain.
ACS Appl Mater Interfaces. 2021 Aug 11;13(31):36948-36957. doi: 10.1021/acsami.1c11612. Epub 2021 Aug 2.
This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) () and 5-fluorouracil-1-acetic acid (). Suitable single crystals for X-ray diffraction studies of and were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates ( and ). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, is chemically altered in culture media. These transformations provoke the partial release of its building blocks and the formation of new species, such as [Cu(UAcO)(HO)]·2HO (), and species corresponding to the partial reduction of the Cu(II) centers. The cytotoxic studies of human pancreatic adenocarcinoma and human uveal melanoma cells show that produces a decrease in the cell viability, while their UAcOH and - are not cytotoxic under similar conditions. The copper reduction species detected in the hydrolysis of are closely related to the formation of the reactive oxygen species (ROS) detected in the cytotoxic studies. These results prompted us to prepare that was designed to improve the cytotoxicity by the substitution of UAcO by 5-FUAcO, taking into account the anticancer activity of the 5-fluorouracil moiety. The new has a similar behavior to both in water and in biological media. However, its subtle structural differences are vital in improving its cytotoxic activity. Indeed, the release during the hydrolysis of species containing the 5-fluorouracil moiety provokes a remarkable increase in cellular toxicity and a significant increase in ROS species formation.
这项工作专注于两种同构的铜(II)纳米配位聚合物(NCP)的合理结构设计,它们分别使用尿嘧啶-1-乙酸(UAcOH)()和 5-氟尿嘧啶-1-乙酸()。在水热条件下,制备了适合于和单晶 X 射线衍射研究的单晶,确定了它们的结构为 1D-CP 梯状聚合物结构。控制合成参数可以将它们加工成基于纳米板的水胶体(和)。这些 NCP 在生理 pH 值的水中长时间稳定。然而,有趣的是,在培养基中发生了化学变化。这些转化促使其部分释放其构建块并形成新的物种,如 [Cu(UAcO)(HO)]·2HO(),以及对应于 Cu(II)中心部分还原的物种。对人胰腺腺癌和人葡萄膜黑素瘤细胞的毒性研究表明,产生细胞活力下降,而其 UAcOH 和 -在类似条件下没有细胞毒性。在水解中检测到的铜还原物种与在细胞毒性研究中检测到的活性氧(ROS)的形成密切相关。这些结果促使我们制备,通过用 5-FUAcO 替代 UAcO 来提高其细胞毒性,考虑到 5-氟尿嘧啶部分的抗癌活性。新的具有与在水和生物介质中相似的行为。然而,其细微的结构差异对于提高其细胞毒性活性至关重要。事实上,在水解过程中释放的含有 5-氟尿嘧啶部分的物种会引起细胞毒性的显著增加和 ROS 物种形成的显著增加。