Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany; Graduate School of Computer Science, Saarland University, Saarbrücken, Germany; Interdisciplinary Graduate School of Natural Product Research, Saarland University, Saarbrücken, Germany.
J Biol Chem. 2021 Sep;297(3):101031. doi: 10.1016/j.jbc.2021.101031. Epub 2021 Jul 31.
The Q80K polymorphism in the NS3-4A protease of the hepatitis C virus is associated with treatment failure of direct-acting antiviral agents. This polymorphism is highly prevalent in genotype 1a infections and stably transmitted between hosts. Here, we investigated the underlying molecular mechanisms of evolutionarily conserved coevolving amino acids in NS3-Q80K and revealed potential implications of epistatic interactions in immune escape and variants persistence. Using purified protein, we characterized the impact of epistatic amino acid substitutions on the physicochemical properties and peptide cleavage kinetics of the NS3-Q80K protease. We found that Q80K destabilized the protease protein fold (p < 0.0001). Although NS3-Q80K showed reduced peptide substrate turnover (p < 0.0002), replicative fitness in an H77S.3 cell culture model of infection was not significantly inferior to the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K stabilized the protein fold (p < 0.0001) and leveraged the WT protease stability. However, changes in protease stability inversely correlated with enzymatic activity. In infectious cell culture, these secondary substitutions were not associated with a gain of replicative fitness in NS3-Q80K variants. Using molecular dynamics, we observed that the total number of residue contacts in NS3-Q80K mutants correlated with protein folding stability. Changes in the number of contacts reflected the compensatory effect on protein folding instability by epistatic substitutions. In summary, epistatic substitutions in NS3-Q80K contribute to viral fitness by mechanisms not directly related to RNA replication. By compensating for protein-folding instability, epistatic interactions likely protect NS3-Q80K variants from immune cell recognition.
丙型肝炎病毒 NS3-4A 蛋白酶中的 Q80K 多态性与直接作用抗病毒药物治疗失败有关。这种多态性在基因型 1a 感染中高度流行,并在宿主之间稳定传播。在这里,我们研究了 NS3-Q80K 中进化上保守的共进化氨基酸的潜在分子机制,并揭示了遗传相互作用在免疫逃逸和变异体持久性方面的潜在影响。使用纯化的蛋白质,我们研究了共变氨基酸取代对 NS3-Q80K 蛋白酶理化性质和肽切割动力学的影响。我们发现 Q80K 使蛋白酶蛋白折叠不稳定(p < 0.0001)。尽管 NS3-Q80K 显示出降低的肽底物周转率(p < 0.0002),但其在 H77S.3 细胞感染模型中的复制适应性并不明显低于 WT 病毒。NS3-Q80K 中残基 91 和 174 的遗传相互作用取代稳定了蛋白折叠(p < 0.0001)并利用了 WT 蛋白酶的稳定性。然而,蛋白酶稳定性的变化与酶活性呈反比。在感染细胞培养中,这些二次取代与 NS3-Q80K 变异体的复制适应性增加无关。使用分子动力学,我们观察到 NS3-Q80K 突变体中残基接触总数与蛋白折叠稳定性相关。接触数量的变化反映了遗传相互作用对蛋白折叠不稳定性的补偿效应。总之,NS3-Q80K 中的遗传相互作用通过与 RNA 复制不直接相关的机制有助于病毒适应性。通过补偿蛋白折叠的不稳定性,遗传相互作用可能保护 NS3-Q80K 变异体免受免疫细胞的识别。