de Beurs Derek, Mens Kasper
Trimbos-instituut, afd. Epidemiologie, Utrecht.
Contact: Derek de Beurs (
Ned Tijdschr Geneeskd. 2021 May 12;165:D5800.
Suicide is inherently difficult to predict. Epidemiological research identified many general risk factors such as a depression, but these predictors have limited predictive power. Machine learning offers a set of tools that can combine hundreds of predictors resulting in the most optimal prediction. It might therefore offer a powerful way to predict inherently complex behaviour such as suicide. In a recent study, state of the art ML algorithms where applied to a large Swedish dataset of 126.205 patients treated in psychiatry containing over 400 potential risk factors. Although the presented results such as an area under the curve if 88% sounds promising, many questions on for example the cost of a false negative remain unanswered. In our comment, we critically discuss the presented findings, and bring up some unanswered questions.
自杀本质上很难预测。流行病学研究确定了许多一般风险因素,如抑郁症,但这些预测因素的预测能力有限。机器学习提供了一组工具,可以将数百个预测因素结合起来,从而实现最优化的预测。因此,它可能为预测诸如自杀这种本质上复杂的行为提供一种强有力的方法。在最近一项研究中,最先进的机器学习算法被应用于瑞典一个大型数据集,该数据集包含126205名在精神病科接受治疗的患者,其中有400多个潜在风险因素。尽管所呈现的结果,如曲线下面积为88%听起来很有前景,但许多问题,例如假阴性的成本,仍未得到解答。在我们的评论中,我们批判性地讨论了所呈现的研究结果,并提出了一些未得到解答的问题。