Zhuo Liqiang, He Huiru, Huang Ruimin, Su Shaojian, Lin Zhili, Qiu Weibin, Huang Beiju, Kan Qiang
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China.
Nanomaterials (Basel). 2021 Jul 12;11(7):1808. doi: 10.3390/nano11071808.
The valley degree of freedom, like the spin degree of freedom in spintronics, is regarded as a new information carrier, promoting the emerging valley photonics. Although there exist topologically protected valley edge states which are immune to optical backscattering caused by defects and sharp edges at the inverse valley Hall phase interfaces composed of ordinary optical dielectric materials, the dispersion and the frequency range of the edge states cannot be tuned once the geometrical parameters of the materials are determined. In this paper, we propose a chirped valley graphene plasmonic metamaterial waveguide composed of the valley graphene plasmonic metamaterials (VGPMs) with regularly varying chemical potentials while keeping the geometrical parameters constant. Due to the excellent tunability of graphene, the proposed waveguide supports group velocity modulation and zero group velocity of the edge states, where the light field of different frequencies focuses at different specific locations. The proposed structures may find significant applications in the fields of slow light, micro-nano-optics, topological plasmonics, and on-chip light manipulation.
与自旋电子学中的自旋自由度一样,谷自由度被视为一种新的信息载体,推动了新兴的谷光子学发展。尽管在由普通光学介电材料组成的反谷霍尔相界面处存在拓扑保护的谷边缘态,这些态对由缺陷和尖锐边缘引起的光学背散射免疫,但一旦材料的几何参数确定,边缘态的色散和频率范围就无法调节。在本文中,我们提出了一种啁啾谷石墨烯等离子体超材料波导,它由化学势呈规则变化的谷石墨烯等离子体超材料(VGPM)组成,同时保持几何参数不变。由于石墨烯具有出色的可调谐性,所提出的波导支持边缘态的群速度调制和零群速度,其中不同频率的光场聚焦在不同的特定位置。所提出的结构可能在慢光、微纳光学、拓扑等离子体学和片上光操纵等领域找到重要应用。