Suppr超能文献

基于强化学习和蒙特卡罗树搜索的最快 RNA 折叠路径学习。

Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search.

机构信息

School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Molecules. 2021 Jul 22;26(15):4420. doi: 10.3390/molecules26154420.

Abstract

RNA molecules participate in many important biological processes, and they need to fold into well-defined secondary and tertiary structures to realize their functions. Like the well-known protein folding problem, there is also an RNA folding problem. The folding problem includes two aspects: structure prediction and folding mechanism. Although the former has been widely studied, the latter is still not well understood. Here we present a deep reinforcement learning algorithms 2dRNA-Fold to study the fastest folding paths of RNA secondary structure. 2dRNA-Fold uses a neural network combined with Monte Carlo tree search to select residue pairing step by step according to a given RNA sequence until the final secondary structure is formed. We apply 2dRNA-Fold to several short RNA molecules and one longer RNA 1Y26 and find that their fastest folding paths show some interesting features. 2dRNA-Fold is further trained using a set of RNA molecules from the dataset bpRNA and is used to predict RNA secondary structure. Since in 2dRNA-Fold the scoring to determine next step is based on possible base pairings, the learned or predicted fastest folding path may not agree with the actual folding paths determined by free energy according to physical laws.

摘要

RNA 分子参与许多重要的生物过程,它们需要折叠成明确的二级和三级结构才能实现其功能。与著名的蛋白质折叠问题一样,也存在 RNA 折叠问题。折叠问题包括两个方面:结构预测和折叠机制。尽管前者已经得到广泛研究,但后者仍未得到很好的理解。在这里,我们提出了一种深度强化学习算法 2dRNA-Fold 来研究 RNA 二级结构的最快折叠路径。2dRNA-Fold 使用神经网络结合蒙特卡罗树搜索,根据给定的 RNA 序列逐步选择残基配对,直到形成最终的二级结构。我们将 2dRNA-Fold 应用于几个短的 RNA 分子和一个较长的 RNA 1Y26,并发现它们最快的折叠路径具有一些有趣的特征。2dRNA-Fold 使用来自数据集 bpRNA 的一组 RNA 分子进行进一步训练,并用于预测 RNA 二级结构。由于在 2dRNA-Fold 中,确定下一步的评分是基于可能的碱基配对,因此,根据物理定律,学习或预测的最快折叠路径可能与由自由能确定的实际折叠路径不一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1390/8347524/77f6749f2698/molecules-26-04420-g001.jpg

相似文献

1
Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search.
Molecules. 2021 Jul 22;26(15):4420. doi: 10.3390/molecules26154420.
2
RNA folding kinetics using Monte Carlo and Gillespie algorithms.
J Math Biol. 2018 Apr;76(5):1195-1227. doi: 10.1007/s00285-017-1169-7. Epub 2017 Aug 5.
3
Monte Carlo Inverse RNA Folding.
Methods Mol Biol. 2025;2847:205-215. doi: 10.1007/978-1-0716-4079-1_14.
4
RNA inverse folding using Monte Carlo tree search.
BMC Bioinformatics. 2017 Nov 6;18(1):468. doi: 10.1186/s12859-017-1882-7.
6
Predicting RNA SHAPE scores with deep learning.
RNA Biol. 2020 Sep;17(9):1324-1330. doi: 10.1080/15476286.2020.1760534. Epub 2020 May 31.
7
A New Method to Predict RNA Secondary Structure Based on RNA Folding Simulation.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Sep-Oct;13(5):990-995. doi: 10.1109/TCBB.2015.2496347. Epub 2015 Nov 3.
8
Kinetic Monte Carlo approach to RNA folding dynamics using structure-based models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052701. doi: 10.1103/PhysRevE.88.052701. Epub 2013 Nov 4.
9
RNA secondary structure prediction using deep learning with thermodynamic integration.
Nat Commun. 2021 Feb 11;12(1):941. doi: 10.1038/s41467-021-21194-4.
10
RNA folding using quantum computers.
PLoS Comput Biol. 2022 Apr 11;18(4):e1010032. doi: 10.1371/journal.pcbi.1010032. eCollection 2022 Apr.

引用本文的文献

1
A divide-and-conquer approach based on deep learning for long RNA secondary structure prediction: Focus on pseudoknots identification.
PLoS One. 2025 Apr 25;20(4):e0314837. doi: 10.1371/journal.pone.0314837. eCollection 2025.

本文引用的文献

1
3dRNA: Building RNA 3D structure with improved template library.
Comput Struct Biotechnol J. 2020 Aug 28;18:2416-2423. doi: 10.1016/j.csbj.2020.08.017. eCollection 2020.
2
Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature. 2019 Nov;575(7782):350-354. doi: 10.1038/s41586-019-1724-z. Epub 2019 Oct 30.
3
Superhuman AI for multiplayer poker.
Science. 2019 Aug 30;365(6456):885-890. doi: 10.1126/science.aay2400. Epub 2019 Jul 11.
4
bpRNA: large-scale automated annotation and analysis of RNA secondary structure.
Nucleic Acids Res. 2018 Jun 20;46(11):5381-5394. doi: 10.1093/nar/gky285.
5
Mastering the game of Go without human knowledge.
Nature. 2017 Oct 18;550(7676):354-359. doi: 10.1038/nature24270.
6
TurboFold II: RNA structural alignment and secondary structure prediction informed by multiple homologs.
Nucleic Acids Res. 2017 Nov 16;45(20):11570-11581. doi: 10.1093/nar/gkx815.
7
Mastering the game of Go with deep neural networks and tree search.
Nature. 2016 Jan 28;529(7587):484-9. doi: 10.1038/nature16961.
8
NONCODE 2016: an informative and valuable data source of long non-coding RNAs.
Nucleic Acids Res. 2016 Jan 4;44(D1):D203-8. doi: 10.1093/nar/gkv1252. Epub 2015 Nov 19.
9
Using synthetic RNAs as scaffolds and regulators.
Nat Struct Mol Biol. 2015 Jan;22(1):8-10. doi: 10.1038/nsmb.2944.
10
CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction.
Nucleic Acids Res. 2013 Apr;41(7):4307-23. doi: 10.1093/nar/gkt101. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验