Department of Automotive Engineering, Clemson University, Greenville, SC 29607, United States; Clemson Composites Center, Clemson University, Greenville, SC 29607, United States.
Department of Automotive Engineering, Clemson University, Greenville, SC 29607, United States; USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States.
Carbohydr Polym. 2021 Nov 1;271:118405. doi: 10.1016/j.carbpol.2021.118405. Epub 2021 Jul 10.
In this study, cellulose nanocrystals (CNCs) with PEG grafts of various lengths (1 k, 2 k, 5 k, and 10 kDa) were prepared via a polydopamine (PDA) mediated method in the aqueous solution. The prepared CNC-PEGs were further used to reinforce the polyvinyl alcohol (PVA) at the loading of 0, 1, 3, 5, and 7 wt% in order to demonstrate the effects of the PEG length on the properties of the PVA/CNC nanocomposites. PEG surface modification resulted in simultaneous improvements in stiffness and toughness. The graft lengths have noticeable impacts on the properties of composites. The shorter graft yields better enhancement in strength and stiffness, attributable to the high efficiency in the stress transfer and high interface adhesion. The longer PEG graft length yields high graft-matrix entanglement, forming a thicker rubbery coating layer that enhances the toughness of PVA/CNC composites.
在这项研究中,通过多巴胺(PDA)介导的方法在水溶液中制备了具有不同长度(1 kDa、2 kDa、5 kDa 和 10 kDa)的聚乙二醇(PEG)接枝的纤维素纳米晶体(CNC)。将制备的 CNC-PEG 进一步以 0、1、3、5 和 7wt%的负载量用于增强聚乙烯醇(PVA),以证明 PEG 长度对 PVA/CNC 纳米复合材料性能的影响。PEG 表面改性同时提高了刚度和韧性。接枝长度对复合材料的性能有显著影响。较短的接枝可以更好地提高强度和刚度,这归因于应力传递的高效率和高界面附着力。较长的 PEG 接枝长度产生了较高的接枝-基质缠结,形成了更厚的橡胶状涂层,从而提高了 PVA/CNC 复合材料的韧性。