Asghar Muhammad Adeel, Ali Abid, Haider Ali, Zaheer Muhammad, Nisar Talha, Wagner Veit, Akhter Zareen
Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
Department of Chemistry, The University of Lahore, 1-Km Defence Road, Lahore 54000, Pakistan.
ACS Omega. 2021 Jul 19;6(30):19419-19426. doi: 10.1021/acsomega.1c01251. eCollection 2021 Aug 3.
Production of hydrogen through water splitting is one of the green and the most practical solutions to cope with the energy crisis and greenhouse effect. However, oxygen evolution reaction (OER) being a sluggish step, the use of precious metal-based catalysts is the main impediment toward the viability of water splitting. In this work, amorphous copper oxide and doped binary- and ternary-metal oxides (containing Co, Ni, and Cu) have been prepared on the surface of fluorine-doped tin oxide by a facile electrodeposition route followed by thermal treatment. The fabricated electrodes have been employed as efficient binder-free OER electrocatalysts possessing a high electrochemical surface area due to their amorphous nature. The cobalt-nickel-doped copper oxide (ternary-metal oxide)-based electrode showed promising OER activity with a high current density of 100 mA cm at 1.65 V versus RHE that escalates to 313 mA cm at 1.76 V in alkaline media at pH 14. The high activity of the ternary-metal oxide-based electrode was further supported by a smaller semicircle in the Nyquist plot. Furthermore, all metal-oxide-based electrodes offered high stability when tested for continuous production of oxygen for 50 h. This work highlights the synthesis of efficient and cost-effective amorphous metal-based oxide catalysts to execute electrocatalytic OER employing an electrodeposition approach.
通过水分解制氢是应对能源危机和温室效应的绿色且最具实用性的解决方案之一。然而,析氧反应(OER)是一个缓慢的步骤,使用贵金属基催化剂是水分解可行性的主要障碍。在这项工作中,通过简便的电沉积路线随后进行热处理,在氟掺杂氧化锡表面制备了非晶态氧化铜以及掺杂的二元和三元金属氧化物(包含钴、镍和铜)。所制备的电极由于其非晶态性质,被用作具有高电化学表面积的高效无粘结剂OER电催化剂。钴镍掺杂的氧化铜(三元金属氧化物)基电极在碱性介质(pH = 14)中相对于可逆氢电极(RHE)在1.65 V时显示出有前景的OER活性,电流密度为100 mA/cm²,在1.76 V时升至313 mA/cm²。三元金属氧化物基电极的高活性在奈奎斯特图中由较小的半圆进一步证实。此外,当测试连续产氧50小时时,所有金属氧化物基电极都表现出高稳定性。这项工作突出了采用电沉积方法合成高效且经济高效的非晶态金属基氧化物催化剂以执行电催化OER。
Nanomaterials (Basel). 2021-3-8
Angew Chem Int Ed Engl. 2019-3-22
J Colloid Interface Sci. 2022-11-15
ACS Appl Energy Mater. 2025-6-27
Chem Soc Rev. 2020-5-26
Chemistry. 2020-3-26
Chem Soc Rev. 2019-6-17
ACS Appl Mater Interfaces. 2019-1-9