Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.
J Chem Theory Comput. 2021 Sep 14;17(9):5635-5650. doi: 10.1021/acs.jctc.1c00541. Epub 2021 Aug 9.
We present a general framework for the development of data-driven many-body (MB) potential energy functions (MB-QM PEFs) that represent the interactions between small molecules at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM PEFs for water is rigorously derived from density functionals belonging to different rungs across Jacob's ladder of approximations within density functional theory (MB-DFT) and from Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual MB contributions to the interaction energies of water clusters, we demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding calculations, with the exception of those derived from density functionals within the generalized gradient approximation (GGA). The differences between the DFT and MB-DFT results are traced back to density-driven errors that prevent GGA functionals from accurately representing the underlying molecular interactions for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming may be overcome, within the MB formalism, by using density-corrected functionals (DC-DFT) that provide a more consistent representation of each individual MB contribution. This is demonstrated through the development of a MB-DFT PEF derived from DC-PBE-D3 data, which more accurately reproduce the corresponding results.
我们提出了一个通用框架,用于开发数据驱动的多体(MB)势能函数(MB-QM PEF),以表示在任意量子力学(QM)理论水平下小分子之间的相互作用。作为演示,我们从密度泛函理论(MB-DFT)中的不同梯级的密度泛函和 Møller-Plesset 微扰理论(MB-MP2)中严格推导出了一系列水的 MB-QM PEF。通过对水分子簇相互作用能的各个 MB 贡献进行系统分析,我们证明了所有 MB-QM PEF 都具有与相应计算相同的精度,除了那些源自广义梯度近似(GGA)内的密度泛函的 MB-QM PEF。DFT 和 MB-DFT 结果之间的差异可追溯到密度驱动的误差,这些误差阻止 GGA 泛函准确地表示不同簇大小和氢键排列下的基本分子相互作用。我们表明,通过使用密度校正泛函(DC-DFT),可以在 MB 形式主义中克服这一缺点,该泛函为每个单独的 MB 贡献提供了更一致的表示。这通过从 DC-PBE-D3 数据中推导出的 MB-DFT PEF 得到了证明,该模型更准确地再现了相应的计算结果。