Department of Electronic Materials Engeering, Kwangwoon University, Kwangwoon-ro 20, Nowon-gu, Seoul 01897, Korea.
OLED Team Associate, Siliconworks, Baumoe-ro, Seocho-gu, Seoul 06763, Korea.
Sensors (Basel). 2021 Jul 22;21(15):4977. doi: 10.3390/s21154977.
This paper proposes a method to embed and extract a watermark on a digital hologram using a deep neural network. The entire algorithm for watermarking digital holograms consists of three sub-networks. For the robustness of watermarking, an attack simulation is inserted inside the deep neural network. By including attack simulation and holographic reconstruction in the network, the deep neural network for watermarking can simultaneously train invisibility and robustness. We propose a network training method using hologram and reconstruction. After training the proposed network, we analyze the robustness of each attack and perform re-training according to this result to propose a method to improve the robustness. We quantitatively evaluate the results of robustness against various attacks and show the reliability of the proposed technique.
本文提出了一种使用深度神经网络在数字全息图中嵌入和提取水印的方法。数字全息图水印的整个算法由三个子网络组成。为了提高水印的鲁棒性,在深度神经网络中插入了攻击模拟。通过在网络中包含攻击模拟和全息重建,用于水印的深度神经网络可以同时训练不可见性和鲁棒性。我们提出了一种使用全息图和重建进行网络训练的方法。在训练完所提出的网络后,我们分析了每种攻击的鲁棒性,并根据该结果进行重新训练,以提出一种提高鲁棒性的方法。我们对各种攻击的鲁棒性结果进行了定量评估,并展示了该技术的可靠性。