Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China.
Guger Technologies OG, Graz, Austria.
Int J Neural Syst. 2021 Sep;31(9):2150040. doi: 10.1142/S0129065721500404. Epub 2021 Aug 11.
Motor imagery (MI) based brain-computer interfaces help patients with movement disorders to regain the ability to control external devices. Common spatial pattern (CSP) is a popular algorithm for feature extraction in decoding MI tasks. However, due to noise and nonstationarity in electroencephalography (EEG), it is not optimal to combine the corresponding features obtained from the traditional CSP algorithm. In this paper, we designed a novel CSP feature selection framework that combines the filter method and the wrapper method. We first evaluated the importance of every CSP feature by the infinite latent feature selection method. Meanwhile, we calculated Wasserstein distance between feature distributions of the same feature under different tasks. Then, we redefined the importance of every CSP feature based on two indicators mentioned above, which eliminates half of CSP features to create a new CSP feature subspace according to the new importance indicator. At last, we designed the improved binary gravitational search algorithm (IBGSA) by rebuilding its transfer function and applied IBGSA on the new CSP feature subspace to find the optimal feature set. To validate the proposed method, we conducted experiments on three public BCI datasets and performed a numerical analysis of the proposed algorithm for MI classification. The accuracies were comparable to those reported in related studies and the presented model outperformed other methods in literature on the same underlying data.
基于运动想象的脑-机接口帮助运动障碍患者重新获得控制外部设备的能力。常见空间模式 (CSP) 是解码运动想象任务的特征提取的一种流行算法。然而,由于脑电图 (EEG) 中的噪声和非平稳性,将传统 CSP 算法获得的对应特征组合并不是最优的。在本文中,我们设计了一种新的 CSP 特征选择框架,该框架结合了滤波器方法和封装器方法。我们首先通过无限潜在特征选择方法评估每个 CSP 特征的重要性。同时,我们计算了不同任务下同一特征的特征分布之间的 Wasserstein 距离。然后,我们根据上述两个指标重新定义了每个 CSP 特征的重要性,这消除了一半的 CSP 特征,根据新的重要性指标创建了一个新的 CSP 特征子空间。最后,我们通过重建其转移函数设计了改进的二进制引力搜索算法 (IBGSA),并将 IBGSA 应用于新的 CSP 特征子空间,以找到最佳的特征集。为了验证所提出的方法,我们在三个公共 BCI 数据集上进行了实验,并对所提出的 MI 分类算法进行了数值分析。所提出的方法在准确性方面可与相关研究报告的结果相媲美,并且在所使用的相同基础数据上,所提出的模型优于文献中的其他方法。