Suppr超能文献

基于刷牙样本的 DNA 倍体和染色质组织分析预测低级别口腔上皮内瘤变的进展。

Predicting Progression of Low-Grade Oral Dysplasia Using Brushing-Based DNA Ploidy and Chromatin Organization Analysis.

机构信息

Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada.

BC Oral Cancer Prevention Program, Cancer Control Research, Vancouver, British Columbia, Canada.

出版信息

Cancer Prev Res (Phila). 2021 Dec;14(12):1111-1118. doi: 10.1158/1940-6207.CAPR-21-0134. Epub 2021 Aug 10.

Abstract

Most oral cancers arise from oral potentially malignant lesions, which show varying grades of dysplasia. Risk of progression increases with increasing grade of dysplasia; however, risk prediction among oral low-grade dysplasia (LGD), that is, mild and moderate dysplasia can be challenging as only 5%-15% transform. Moreover, grading of dysplasia is subjective and varies with the area of the lesion being biopsied. To date, no biomarkers or tools are used clinically to triage oral LGDs. This study uses a combination of DNA ploidy and chromatin organization (CO) scores from cells obtained from lesion brushings to identify oral LGDs at high-risk of progression. A total of 130 lesion brushings from patients with oral LGDs were selected of which 16 (12.3%) lesions progressed to severe dysplasia or cancer. DNA ploidy and CO scores were analyzed from nuclear features measured by our in-house DNA image cytometry (DNA-ICM) system and used to classify brushings into low-risk and high-risk. A total of 57 samples were classified as high-risk of which 13 were progressors. High-risk DNA brushing was significant for progression ( = 0.001) and grade of dysplasia ( = 0.004). Multivariate analysis showed high-risk DNA brushing showed 5.1- to 8-fold increased risk of progression, a stronger predictor than dysplasia grading and lesion clinical features. DNA-ICM can serve as a non-invasive, high-throughput tool to identify high-risk lesions several years before transformation. This will help clinicians focus on such lesions whereas low-risk lesions may be spared from unnecessary biopsies. DNA ploidy and chromatin organization of cells collected from oral potentially malignant lesions (OPMLs) can identify lesions at high-risk of progression several years prior. This non-invasive test would enable clinicians to triage high-risk (OPMLs) for closer follow-up while low-risk lesions can undergo less frequent biopsies reducing burden on healthcare resources.

摘要

大多数口腔癌是由口腔潜在恶性病变引起的,这些病变表现出不同程度的异型增生。异型增生程度越高,进展的风险就越大;然而,对于口腔低级别异型增生(LGD),即轻度和中度异型增生的风险预测可能具有挑战性,因为只有 5%-15%会转化。此外,异型增生的分级是主观的,并且因活检的病变部位而异。迄今为止,临床上没有使用生物标志物或工具来对口腔 LGD 进行分类。本研究使用来自病变刷取物的细胞的 DNA 倍体和染色质组织(CO)评分的组合来识别具有高进展风险的口腔 LGD。共选择了 130 例来自口腔 LGD 患者的病变刷取物,其中 16 例(12.3%)病变进展为重度异型增生或癌症。通过我们内部的 DNA 图像细胞计量学(DNA-ICM)系统分析核特征的 DNA 倍体和 CO 评分,并用于将刷取物分类为低风险和高风险。共有 57 个样本被归类为高风险,其中 13 个为进展者。高风险 DNA 刷检与进展( = 0.001)和异型增生分级( = 0.004)显著相关。多变量分析显示,高风险 DNA 刷检显示进展的风险增加了 5.1-8 倍,比异型增生分级和病变临床特征更强的预测因素。DNA-ICM 可以作为一种非侵入性、高通量的工具,在转化前几年识别高危病变。这将帮助临床医生关注这些病变,而低风险病变可能免受不必要的活检。从口腔潜在恶性病变(OPML)中收集的细胞的 DNA 倍体和染色质组织可以在几年前识别出有进展高风险的病变。这种非侵入性测试将使临床医生能够对高危(OPML)进行分类,以便进行更密切的随访,而低风险病变可以进行较少的频繁活检,从而减少医疗资源的负担。

相似文献

1
Predicting Progression of Low-Grade Oral Dysplasia Using Brushing-Based DNA Ploidy and Chromatin Organization Analysis.
Cancer Prev Res (Phila). 2021 Dec;14(12):1111-1118. doi: 10.1158/1940-6207.CAPR-21-0134. Epub 2021 Aug 10.
2
Predictive value of dysplasia grading and DNA ploidy in malignant transformation of oral potentially malignant disorders.
Cancer Prev Res (Phila). 2013 Aug;6(8):822-31. doi: 10.1158/1940-6207.CAPR-13-0001. Epub 2013 Jun 12.
3
Oral cancer detection and progression prediction using noninvasive cytology-based DNA ploidy approach.
J Oral Pathol Med. 2024 Aug;53(7):434-443. doi: 10.1111/jop.13562. Epub 2024 Jun 2.
4
Comparison of histological grading and large-scale genomic status (DNA ploidy) as prognostic tools in oral dysplasia.
J Pathol. 2001 Jul;194(3):303-10. doi: 10.1002/1096-9896(200107)194:3<303::AID-PATH879>3.0.CO;2-Q.
5
Use of DNA image cytometry in conducting oral cancer screening in rural India.
Cytopathology. 2022 Sep;33(5):600-610. doi: 10.1111/cyt.13159. Epub 2022 Jul 19.
6
Dysplasia and DNA ploidy to prognosticate clinical outcome in oral potentially malignant disorders.
J Oral Pathol Med. 2021 Feb;50(2):200-209. doi: 10.1111/jop.13121. Epub 2021 Jan 5.
7
The role of DNA image cytometry in screening oral potentially malignant lesions using brushings: A systematic review.
Oral Oncol. 2019 Sep;96:51-59. doi: 10.1016/j.oraloncology.2019.07.006. Epub 2019 Jul 10.
9
Image-based DNA ploidy analysis aids prediction of malignant transformation in oral lichen planus.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Jun;121(6):643-50. doi: 10.1016/j.oooo.2016.02.008. Epub 2016 Feb 23.
10
[Diagnosis and treatment of oral precancerous lesions].
Tidsskr Nor Laegeforen. 2001 Oct 30;121(26):3066-71.

本文引用的文献

2
Dysplasia and DNA ploidy to prognosticate clinical outcome in oral potentially malignant disorders.
J Oral Pathol Med. 2021 Feb;50(2):200-209. doi: 10.1111/jop.13121. Epub 2021 Jan 5.
3
Oral Leukoplakia and Risk of Progression to Oral Cancer: A Population-Based Cohort Study.
J Natl Cancer Inst. 2020 Oct 1;112(10):1047-1054. doi: 10.1093/jnci/djz238.
4
The role of DNA image cytometry in screening oral potentially malignant lesions using brushings: A systematic review.
Oral Oncol. 2019 Sep;96:51-59. doi: 10.1016/j.oraloncology.2019.07.006. Epub 2019 Jul 10.
7
Oral potentially malignant disorders: risk of progression to malignancy.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Jun;125(6):612-627. doi: 10.1016/j.oooo.2017.12.011. Epub 2017 Dec 29.
8
Dysplasia Should Not Be Ignored in Lichenoid Mucositis.
J Dent Res. 2018 Jul;97(7):767-772. doi: 10.1177/0022034517748639. Epub 2018 Jan 12.
9
Quantification of large scale DNA organization for predicting prostate cancer recurrence.
Cytometry A. 2017 Dec;91(12):1164-1174. doi: 10.1002/cyto.a.23287. Epub 2017 Nov 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验