Suppr超能文献

一种用于预测急诊普通外科手术后死亡率的机器学习方法。

A Machine Learning Approach in Predicting Mortality Following Emergency General Surgery.

机构信息

Department of Surgery, 12286Rutgers New Jersey Medical School, Newark, NJ, USA.

出版信息

Am Surg. 2021 Sep;87(9):1379-1385. doi: 10.1177/00031348211038568. Epub 2021 Aug 11.

Abstract

BACKGROUND

There is a significant mortality burden associated with emergency general surgery (EGS) procedures. The objective of this study was to develop and validate the use of a machine learning approach to predict mortality following EGS.

METHODS

The American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent EGS between 2012 and 2017. We developed a machine learning algorithm to predict mortality following EGS and compared its performance with existing risk-prediction models of American Society of Anesthesiologists (ASA) classification, American College of Surgeon Surgical Risk Calculator (ACS-SRC), and the modified frailty index (mFI) using the area under receiver operative curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

RESULTS

The machine learning algorithm had a very high performance for predicting mortality following EGS, and it had superior performance compared to the ASA classification, ACS-SRC, and the mFI, as measured by the AUC, sensitivity, specificity, PPV, and NPV.

DISCUSSION

Machine learning approaches may be a promising tool to predict outcomes for EGS, aiding clinicians in surgical decision-making and counseling of patients and family, improving clinical outcomes by identifying modifiable risk factors than can be optimized, and decreasing treatment costs through resource allocation.

摘要

背景

急诊普通外科(EGS)手术相关的死亡率负担巨大。本研究的目的是开发和验证一种机器学习方法,以预测 EGS 后的死亡率。

方法

查询了 2012 年至 2017 年间接受 EGS 的患者的美国外科医师学会国家外科质量改进计划数据库。我们开发了一种机器学习算法来预测 EGS 后的死亡率,并使用接受者操作特征曲线下的面积(AUC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)比较了其与美国麻醉医师协会(ASA)分类、美国外科医师学会手术风险计算器(ACS-SRC)和改良虚弱指数(mFI)的现有风险预测模型的性能。

结果

机器学习算法在预测 EGS 后的死亡率方面表现非常出色,与 ASA 分类、ACS-SRC 和 mFI 相比,AUC、敏感性、特异性、PPV 和 NPV 均具有更高的性能。

讨论

机器学习方法可能是预测 EGS 结果的有前途的工具,通过识别可优化的可改变的风险因素,帮助临床医生做出手术决策和为患者及其家属提供咨询,改善临床结果,并通过资源分配降低治疗成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验