Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037.
Chemistry. 2021 Oct 7;27(56):13991-13997. doi: 10.1002/chem.202102348. Epub 2021 Sep 15.
The series of unnatural base pairs (UBPs) developed by the Romesberg lab, which pair via hydrophobic and packing interactions have been replicated, transcribed, and translated inside of a living organism. However, as to why these UBPs exhibit variable fidelity and efficiency when used in different contexts is not clear. In an effort to gain some insights, we investigated the thermal stability and pairing selectivity of the (d)NaM-(d)TPT3 UBP in 11nt duplexes via UV spectroscopy and the effects on helical structure via CD spectroscopy. We observed that while the duplexes containing a UBP are less stable than fully natural duplexes, they are generally more stable than duplexes containing natural mispairs. This work provides the first insights connecting the thermal stability of the (d)NaM-(d)TPT3 UBP to the molecular mechanisms for varying replication fidelity in different sequence contexts in DNA, asymmetrical transcription fidelity, and codon:anticodon interactions and can assist in future UBP development.
罗梅斯伯格实验室开发的一系列非天然碱基对(UBP)通过疏水作用和堆积相互作用进行配对,已经在活体生物内被复制、转录和翻译。然而,这些 UBP 在不同的环境中表现出可变的保真度和效率的原因尚不清楚。为了深入了解这一问题,我们通过紫外光谱法研究了(d)NaM-(d)TPT3 UBP 在 11nt 双螺旋体中的热稳定性和配对选择性,并通过圆二色谱法研究了对螺旋结构的影响。我们观察到,虽然含有 UBP 的双螺旋体不如完全天然的双螺旋体稳定,但它们通常比含有天然错配的双螺旋体更稳定。这项工作首次将(d)NaM-(d)TPT3 UBP 的热稳定性与 DNA 中不同序列环境下复制保真度变化的分子机制、不对称转录保真度以及密码子-反密码子相互作用联系起来,并且可以为未来 UBP 的发展提供帮助。