Suppr超能文献

基于脑桥放射状弥散张量和症状持续时间的分类器可准确预测微血管减压术后三叉神经痛复发:一项初步研究和算法描述。

Classifier Using Pontine Radial Diffusivity and Symptom Duration Accurately Predicts Recurrence of Trigeminal Neuralgia After Microvascular Decompression: A Pilot Study and Algorithm Description.

机构信息

Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Neurosurgery. 2021 Oct 13;89(5):777-783. doi: 10.1093/neuros/nyab292.

Abstract

BACKGROUND

Preprocedure diffusion tensor magnetic resonance imaging (MRI) may predict the response of trigeminal neuralgia (TN) patients to Gamma Knife (Elekta AB) and microvascular decompression (MVD).

OBJECTIVE

To test this hypothesis using pontine-segment diffusion tensor MRI radial diffusivity (RD), a known biomarker for demyelination, to predict TN recurrence following MVD.

METHODS

RD from the pontine segment of the trigeminal tract was extracted in a semiautomated and blinded fashion and normalized to background pontine RD. Following validation against published results, the relationship of normalized RD to symptom duration (DS) was measured. Both parameters were then introduced into machine-learning classifiers to group patient outcomes as TN remission or recurrence. Performance was evaluated in an observational study with leave-one-out cross-validation to calculate accuracy, sensitivity, specificity, and receiver operating characteristic curves.

RESULTS

The study population included 22 patients with TN type 1 (TN1). There was a negative correlation of normalized RD and preoperative symptom duration (P = .035, R2 = .20). When pontine-segment RD and DS were included as input variables, 2 classifiers predicted pain-free remission versus eventual recurrence with 85% accuracy, 83% sensitivity, and 86% specificity (leave-one-out cross-validation; P = .029) in a cohort of 13 patients undergoing MVD.

CONCLUSION

Pontine-segment RD and DS accurately predict MVD outcomes in TN1 and provide further evidence that diffusion tensor MRI contains prognostic information. Use of a classifier may allow more accurate risk stratification for neurosurgeons and patients considering MVD as a treatment for TN1. These findings provide further insight into the relationship of pontine microstructure, represented by RD, and the pathophysiology of TN.

摘要

背景

术前弥散张量磁共振成像(MRI)可预测三叉神经痛(TN)患者对伽玛刀(Elekta AB)和微血管减压术(MVD)的反应。

目的

使用桥脑节段弥散张量 MRI 辐射状弥散率(RD)来检验这一假说,RD 是脱髓鞘的已知生物标志物,以预测 MVD 后 TN 的复发。

方法

采用半自动、盲法提取三叉神经束桥脑节段 RD,并将其归一化为桥脑 RD 的背景值。在与已发表结果进行验证后,测量标准化 RD 与症状持续时间(DS)的关系。然后将这两个参数引入机器学习分类器,将患者的结果分为 TN 缓解或复发。采用观察性研究,采用留一法交叉验证来评估性能,以计算准确性、敏感性、特异性和接收者操作特征曲线。

结果

研究人群包括 22 例 TN1 患者。标准化 RD 与术前症状持续时间呈负相关(P =.035,R2 =.20)。当将桥脑节段 RD 和 DS 作为输入变量时,2 个分类器以 85%的准确率、83%的敏感性和 86%的特异性(留一法交叉验证;P =.029)预测疼痛缓解与最终复发,在 13 例接受 MVD 的患者中。

结论

桥脑节段 RD 和 DS 可准确预测 TN1 患者 MVD 的预后,并进一步证明弥散张量 MRI 包含预后信息。分类器的使用可能使神经外科医生和考虑 MVD 作为 TN1 治疗方法的患者更准确地进行风险分层。这些发现进一步深入了解了 RD 代表的桥脑微观结构与 TN 病理生理学之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验