Suppr超能文献

肌节呼吸的机制:肌丝晶格内的容积变化和对流流。

A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice.

机构信息

Allen Institute for Cell Science, Seattle, Washington; Department of Biology, University of Washington, Seattle, Washington.

Department of Biology, University of Washington, Seattle, Washington; Applied ML Group, Microsoft CSE, Redmond, Washington.

出版信息

Biophys J. 2021 Sep 21;120(18):4079-4090. doi: 10.1016/j.bpj.2021.08.006. Epub 2021 Aug 10.

Abstract

During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.

摘要

在肌肉收缩过程中,附着在粗丝上的肌球蛋白马达与肌动蛋白细丝结合并滑动。这些马达依赖于 ATP 提供的能量,部分 ATP 通过扩散从肌浆进入肌动蛋白和肌球蛋白丝晶格的内部提供。在收缩过程中,晶格中的细丝的径向间距可能会发生变化或保持不变。如果晶格是等容的,那么当肌肉缩短时它必须膨胀。然而,如果间距保持不变或具有不同的轴向和径向运动模式,那么晶格在收缩过程中会改变体积,驱动流体运动,并协助收缩晶格和周围细胞内空间之间的分子运输。我们首先创建了一个平流扩散反应流模型,并表明在没有晶格膨胀的情况下,进入和离开肌节晶格的流动会非常显著。平流输运与扩散相结合有潜力大大增强肌节内代谢物的交换。通过对收缩肌肉进行时间分辨的 X 射线衍射,我们接下来表明收缩晶格既不是等容的,也不是间距不变的。相反,晶格间距是时变的,取决于激活,并且可以表现为有效时变泊松比。在同步昆虫飞行肌肉的肌节晶格中,由此产生的流体流动甚至比恒定晶格间距条件下预期的还要大。晶格间距取决于产生径向力的各种因素,包括交联桥、类似肌联蛋白的分子和其他结构蛋白。体积变化和平流输运随周期性收缩过程中肌肉刺激的相位而变化,但在所有条件下仍然很重要。尽管幅度不同,但在肌节不是等容的情况下,平流输运将始终发生。类似于“呼吸”,肌节中的平流扩散运输足以促进代谢物交换,并可能在收缩本身的调节中发挥作用。

相似文献

1
A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice.
Biophys J. 2021 Sep 21;120(18):4079-4090. doi: 10.1016/j.bpj.2021.08.006. Epub 2021 Aug 10.
2
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
Biophys J. 1994 Dec;67(6):2422-35. doi: 10.1016/S0006-3495(94)80729-5.
4
Titin stiffness modifies the force-generating region of muscle sarcomeres.
Sci Rep. 2016 Apr 15;6:24492. doi: 10.1038/srep24492.
5
The length-tension curve in muscle depends on lattice spacing.
Proc Biol Sci. 2013 Sep 7;280(1766):20130697. doi: 10.1098/rspb.2013.0697.
6
Calcium sensitivity and myofilament lattice structure in titin N2B KO mice.
Arch Biochem Biophys. 2013 Jul 1;535(1):76-83. doi: 10.1016/j.abb.2012.12.004. Epub 2012 Dec 14.
8
Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
Biophys J. 2011 Mar 16;100(6):1499-508. doi: 10.1016/j.bpj.2011.01.059.
9
Studies on the structure of muscle. III. Phase contrast and electron microscopy of dipteran flight muscle.
J Biophys Biochem Cytol. 1955 Jul 25;1(4):361-80. doi: 10.1083/jcb.1.4.361.

引用本文的文献

2
Nanometer scale difference in myofilament lattice structure of muscle alters muscle function in a spatially explicit model.
PLoS Comput Biol. 2025 Apr 7;21(4):e1012862. doi: 10.1371/journal.pcbi.1012862. eCollection 2025 Apr.
3
Fluid mechanics of sarcomeres as porous media.
Soft Matter. 2025 Apr 9;21(15):2849-2867. doi: 10.1039/d4sm01327a.
5
An optimized approach to study nanoscale sarcomere structure utilizing super-resolution microscopy with nanobodies.
PLoS One. 2024 Apr 30;19(4):e0300348. doi: 10.1371/journal.pone.0300348. eCollection 2024.
6
Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C.
Int J Mol Sci. 2023 Aug 2;24(15):12349. doi: 10.3390/ijms241512349.
8
Frequency-dependent signaling in cardiac myocytes.
Front Physiol. 2022 Sep 2;13:926422. doi: 10.3389/fphys.2022.926422. eCollection 2022.

本文引用的文献

1
Fluid flow in the sarcomere.
Arch Biochem Biophys. 2021 Jul 30;706:108923. doi: 10.1016/j.abb.2021.108923. Epub 2021 May 21.
2
The unified myofibrillar matrix for force generation in muscle.
Nat Commun. 2020 Jul 24;11(1):3722. doi: 10.1038/s41467-020-17579-6.
5
A Spatially Explicit Model Shows How Titin Stiffness Modulates Muscle Mechanics and Energetics.
Integr Comp Biol. 2018 Aug 1;58(2):186-193. doi: 10.1093/icb/icy055.
6
Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms.
Biophys J. 2017 Mar 14;112(5):984-996. doi: 10.1016/j.bpj.2017.01.021.
7
Elastic proteins in the flight muscle of Manduca sexta.
Arch Biochem Biophys. 2015 Feb 15;568:16-27. doi: 10.1016/j.abb.2014.12.033. Epub 2015 Jan 17.
8
Electrostatic forces or structural scaffolding: what stabilizes the lattice spacing of relaxed skinned muscle fibers?
J Theor Biol. 2014 Aug 21;355:53-60. doi: 10.1016/j.jtbi.2014.03.037. Epub 2014 Apr 1.
9
Diffusion coefficients of endogenous cytosolic proteins from rabbit skinned muscle fibers.
Biophys J. 2014 Feb 18;106(4):780-92. doi: 10.1016/j.bpj.2013.12.044.
10
The molecular trigger for high-speed wing beats in a bee.
Science. 2013 Sep 13;341(6151):1243-6. doi: 10.1126/science.1237266. Epub 2013 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验