Suppr超能文献

耳蜗微音器模型探索毛细胞换能电流的调谐和幅度。

Model of cochlear microphonic explores the tuning and magnitude of hair cell transduction current.

机构信息

Electrical Engineering, New York, New York.

Otolaryngology, Head and Neck Surgery, New York, New York; Biomedical Engineering, Columbia University, New York, New York.

出版信息

Biophys J. 2021 Sep 7;120(17):3550-3565. doi: 10.1016/j.bpj.2021.08.010. Epub 2021 Aug 10.

Abstract

The mammalian cochlea relies on the active forcing of sensory outer hair cells (OHCs) to amplify traveling wave responses along the basilar membrane. These forces are the result of electromotility, wherein current through the OHCs leads to conformational changes in the cells that provide stresses on surrounding structures. OHC transducer current can be detected via the voltage in the scala tympani (the cochlear microphonic, CM), and the CM can be used as an indicator of healthy cochlear operation. The CM represents a summation of OHC currents (the inner hair cell contribution is known to be small) and to use CM to probe the properties of OHC transduction requires a model that simulates that summation. We developed a finite element model for that purpose. The pattern of current generators (the model input) was initially based on basilar membrane displacement, with the current size based on in vitro data. The model was able to reproduce the amplitude of experimental CM results reasonably well when the input tuning was enhanced slightly (peak increased by ∼6 dB), which can be regarded as additional hair bundle tuning, and with a current/input value of 200-260 pA/nm, which is ∼4 times greater than the largest in vitro measures.

摘要

哺乳动物耳蜗依赖于感觉外毛细胞 (OHC) 的主动力来沿基底膜放大行波反应。这些力是电致动的结果,其中通过 OHC 的电流导致细胞的构象变化,从而对周围结构产生应力。OHC 换能器电流可通过鼓阶中的电压 (耳蜗微音,CM) 检测到,并且 CM 可用作健康耳蜗操作的指示符。CM 代表 OHC 电流的总和(已知内毛细胞的贡献很小),并且要使用 CM 来探测 OHC 换能的特性,需要模拟该总和的模型。为此,我们开发了一个有限元模型。电流发生器的模式(模型输入)最初基于基底膜位移,电流大小基于体外数据。当输入调谐稍微增强时(峰值增加约 6 dB),该模型能够很好地再现实验 CM 结果的幅度,这可以被视为额外的毛束调谐,并且电流/输入值为 200-260 pA/nm,约为体外测量值的 4 倍。

相似文献

1
Model of cochlear microphonic explores the tuning and magnitude of hair cell transduction current.
Biophys J. 2021 Sep 7;120(17):3550-3565. doi: 10.1016/j.bpj.2021.08.010. Epub 2021 Aug 10.
2
Optimal electrical properties of outer hair cells ensure cochlear amplification.
PLoS One. 2012;7(11):e50572. doi: 10.1371/journal.pone.0050572. Epub 2012 Nov 27.
3
The impact of targeted ablation of one row of outer hair cells and Deiters' cells on cochlear amplification.
J Neurophysiol. 2022 Nov 1;128(5):1365-1373. doi: 10.1152/jn.00501.2021. Epub 2022 Oct 19.
7
ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani.
Hear Res. 2005 Jul;205(1-2):35-43. doi: 10.1016/j.heares.2005.02.009.
8
Stimulus biasing: a comparison between cochlear hair cell and organ of Corti response patterns.
Hear Res. 1994 May;75(1-2):103-13. doi: 10.1016/0378-5955(94)90061-2.
9
4-Aminopyridine effects on summating potentials in the guinea pig.
Hear Res. 1996 Dec 1;102(1-2):70-80. doi: 10.1016/s0378-5955(96)00149-9.

引用本文的文献

1
Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation.
Biophys J. 2024 Oct 1;123(19):3421-3432. doi: 10.1016/j.bpj.2024.08.007. Epub 2024 Aug 14.
2
Local cochlear mechanical responses revealed through outer hair cell receptor potential measurements.
Biophys J. 2024 Sep 17;123(18):3163-3175. doi: 10.1016/j.bpj.2024.07.015. Epub 2024 Jul 15.
3
Bats experience age-related hearing loss (presbycusis).
Life Sci Alliance. 2023 Mar 30;6(6). doi: 10.26508/lsa.202201847. Print 2023 Jun.
4
The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea.
J Assoc Res Otolaryngol. 2023 Apr;24(2):129-145. doi: 10.1007/s10162-022-00884-w. Epub 2023 Feb 1.

本文引用的文献

1
Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity.
Biophys J. 2020 Nov 17;119(10):2087-2101. doi: 10.1016/j.bpj.2020.10.005. Epub 2020 Oct 20.
2
A role for tectorial membrane mechanics in activating the cochlear amplifier.
Sci Rep. 2020 Oct 19;10(1):17620. doi: 10.1038/s41598-020-73873-9.
3
High-Dose Furosemide Enhances the Magnetic Resonance Signal of Systemic Gadolinium in the Mammalian Cochlea.
Otol Neurotol. 2020 Apr;41(4):545-553. doi: 10.1097/MAO.0000000000002571.
4
Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli.
Hear Res. 2019 Jun;377:271-281. doi: 10.1016/j.heares.2019.04.001. Epub 2019 Apr 11.
5
Adaptation of Cochlear Amplification to Low Endocochlear Potential.
Biophys J. 2019 May 7;116(9):1769-1786. doi: 10.1016/j.bpj.2019.03.020. Epub 2019 Mar 30.
6
Probing hair cell's mechano-transduction using two-tone suppression measurements.
Sci Rep. 2019 Mar 15;9(1):4626. doi: 10.1038/s41598-019-41112-5.
7
Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.
Nat Commun. 2018 Aug 3;9(1):3054. doi: 10.1038/s41467-018-05483-z.
8
Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
J Assoc Res Otolaryngol. 2018 Aug;19(4):401-419. doi: 10.1007/s10162-018-0668-6. Epub 2018 Jul 16.
10
Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss.
Front Neurosci. 2017 Apr 4;11:169. doi: 10.3389/fnins.2017.00169. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验