Al-Kouz Wael, Bendrer Bilal Abdel-Illah, Aissa Abderrahmane, Almuhtady Ahmad, Jamshed Wasim, Nisar Kottakkaran Sooppy, Mourad Abed, Alshehri Nawal A, Zakarya Mohammed
Department of Mechanical and Maintenance Engineering, German Jordanian University, Amman, 11180, Jordan.
Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara, Mascara, Algeria.
Sci Rep. 2021 Aug 13;11(1):16494. doi: 10.1038/s41598-021-95846-2.
In this work, the finite element method is employed to simulate heat transfer and irreversibilities in a mixed convection two-phase flow through a wavy enclosure filled with water-alumina nanoliquid and contains a rotating solid cylinder in the presence of a uniform magnetic field. Impact of the variations of undulations number (0 ≤ N ≤ 5), Ra (10 ≤ Ra ≤ 10), Ha (0 ≤ Ha ≤ 100), and angular rotational velocity (- 500 ≤ Ω ≤ 500) were presented. Isotherms distribution, streamlines and isentropic lines are displayed. The governing equations are verified by using the Galerkin Finite Element Method (GFEM). The Nusselt numbers are calculated and displayed graphically for several parametric studies. The computational calculations were carried out using Buongiorno's non-homogeneous model. To illustrate the studied problem, a thorough discussion of the findings was conducted. The results show the enhacement of the maximum value of the flow function and the heat transfer process by increasing the value of Rayleigh number. Furthermore the irreversibility is primarily governed by the heat transfer component and the increment of the waviness of the active surfaces or the cylinder rotational velocity or hartmann number will suppress the fluid motion and hinders the heat transfer process.
在这项工作中,采用有限元方法来模拟混合对流两相流在充满水 - 氧化铝纳米流体且存在均匀磁场的波浪形封闭腔内的传热和不可逆性,该封闭腔内有一个旋转的固体圆柱。给出了波动数(0≤N≤5)、瑞利数(10≤Ra≤10)、哈特曼数(0≤Ha≤100)和角旋转速度( - 500≤Ω≤500)变化的影响。展示了等温线分布、流线和等熵线。控制方程通过伽辽金有限元方法(GFEM)进行验证。针对多个参数研究计算并以图形方式显示了努塞尔数。使用布翁焦尔诺的非均匀模型进行了计算。为说明所研究的问题,对结果进行了深入讨论。结果表明,通过增加瑞利数的值,流动函数的最大值和传热过程得到增强。此外,不可逆性主要由传热分量控制,活动表面的波纹度增加、圆柱旋转速度增加或哈特曼数增加会抑制流体运动并阻碍传热过程。