Suppr超能文献

瞬态光学诱导电热微涡旋的时间分辨粒子图像测速分析与计算建模

Time-resolved particle image velocimetry analysis and computational modeling of transient optically induced electrothermal micro vortex.

作者信息

Gupta Kshitiz, Chen Zhengwei, Williams Stuart J, Wereley Steven T

机构信息

Department of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.

Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky, USA.

出版信息

Electrophoresis. 2021 Dec;42(23):2483-2489. doi: 10.1002/elps.202100104. Epub 2021 Aug 29.

Abstract

Trapping, sorting, transportation, and manipulation of synthetic microparticles and biological cells enable investigations in their behavior and properties. Microfluidic techniques like rapid electrokinetic patterning (REP) provide a non-invasive means to probe into the nature of these micro and nanoparticles. The opto-electrically induced nature of a REP micro vortex allows tuning of the trap characteristics in real-time. In this work, we studied the effects of transient optical heating on the induced electrothermal vortex using micro-particle image velocimetry (μ-PIV) and computational modeling. A near infra-red (980 nm) laser beam was focused on a colloidal suspension of 1 μm polystyrene beads sandwiched between two parallel-plate electrodes. The electrodes were subjected to an AC current. The laser spot was scanned back-and-forth in a line, at different frequencies, to create the transient vortex. This phenomenon was also studied with a computational model made using COMSOL Multiphysics. We visualize fluid flow in custom-shaped REP traps by superposing multiple axisymmetric (spot) vortices and discuss the limitations of using superposition in dynamically changing traps.

摘要

合成微粒和生物细胞的捕获、分选、运输及操控有助于对其行为和特性进行研究。诸如快速电动图案化(REP)等微流控技术提供了一种非侵入性手段,用于探究这些微米和纳米颗粒的本质。REP微涡旋的光电诱导特性允许实时调整捕获特性。在这项工作中,我们使用微粒图像测速技术(μ-PIV)和计算建模研究了瞬态光学加热对诱导电热涡旋的影响。一束近红外(980 nm)激光束聚焦在夹在两个平行板电极之间的1μm聚苯乙烯珠的胶体悬浮液上。电极通以交流电。激光光斑以不同频率在线上来回扫描,以产生瞬态涡旋。我们还用COMSOL Multiphysics制作的计算模型研究了这一现象。我们通过叠加多个轴对称(点)涡旋来可视化定制形状的REP陷阱中的流体流动,并讨论在动态变化的陷阱中使用叠加的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验