Suppr超能文献

氢化对有缺陷的五边形石墨烯拉伸和剪切力学性能的影响。

Effects of hydrogenation on the tensile and shear mechanical properties of defective penta-graphene.

作者信息

Han Tongwei, Dong Jabin, Wang Xueyi, Zhang Xiaoyan, Lv Yikai, Scarpa Fabrizio

机构信息

Faculty of Civil Engineering and Mechanics, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 210013, People's Republic of China.

School of Chemistry and Chemical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 210013, People's Republic of China.

出版信息

Nanotechnology. 2021 Sep 15;32(49). doi: 10.1088/1361-6528/ac20fb.

Abstract

Penta-graphene (PG) is a new theoretical two-dimensional metastable carbon allotrope composed entirely of carbon pentagons. In this paper, molecular dynamics simulations are performed to investigate the effects of the hydrogenation on the tensile and shear mechanical properties, together with the failure mechanism of PG with vacancy defects. The results show that hydrogenation can effectively tune the mechanical properties and failure mechanism of PG with vacancy defects. The defective PG (DPG) with low hydrogenation coverages exhibits obvious plastic deformation features under tensile and shear loading, and pentagon-to-polygon structural transformation is observed, while complete hydrogenation can change the failure mechanism of DPG from plastic deformation to brittle fracture. Both the tensile and shear moduli and elastic limit of DPG first decrease dramatically and then increase slowly with the increase of hydrogenation coverage, while tensile and shear strain increases almost monotonically with rising hydrogenation coverage. Complete hydrogenation can result in large enhancement of tensile and shear elastic stress limit and strain. These results may provide an important guideline for effectively tuning the mechanical properties of PG and other two-dimensional nanomaterials.

摘要

五元石墨烯(PG)是一种全新的理论二维亚稳碳同素异形体,完全由碳五边形构成。本文通过分子动力学模拟,研究了氢化作用对PG含空位缺陷时拉伸和剪切力学性能的影响,以及其失效机制。结果表明,氢化作用能够有效调节含空位缺陷的PG的力学性能和失效机制。氢化覆盖率较低的缺陷PG(DPG)在拉伸和剪切载荷作用下呈现出明显的塑性变形特征,且观察到五边形到多边形的结构转变,而完全氢化可使DPG的失效机制从塑性变形转变为脆性断裂。DPG的拉伸模量、剪切模量和弹性极限均随着氢化覆盖率的增加先急剧下降,然后缓慢上升,而拉伸应变和剪切应变则几乎随氢化覆盖率的增加单调增加。完全氢化可导致拉伸和剪切弹性应力极限及应变大幅提高。这些结果可能为有效调节PG及其他二维纳米材料的力学性能提供重要指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验