Pizzone Mattia, Grimaldi Maria Grazia, La Magna Antonino, Rahmani Neda, Scalese Silvia, Adam Jost, Puglisi Rosaria A
Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Strada Ottava 5, Zona Industriale, 95121 Catania, Italy.
Dipartimento di Fisica e Astronomia "Ettore Majorana", Università degli Studi di Catania, Via S. Sofia, 64, 95123 Catania, Italy.
Nanomaterials (Basel). 2021 Jul 24;11(8):1899. doi: 10.3390/nano11081899.
Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times. In this work, we investigate the molecular surface coverage over time of diethyl-propyl phosphonate on silicon, by employing high-resolution morphological and electrical characterization, and examine the effects of the post-deposition surface treatments on it. We present these data together with density functional theory simulations of the molecules-substrate system and electrical measurements of the doped samples. The results allow us to recognise a difference in the bonding types involved in the formation of the molecular layers and how these influence the final doping profile of the samples. This will improve the control on the electrical properties of MD-based devices, allowing for a finer tuning of their performance.
分子掺杂(MD)涉及在驱入步骤之前,将含有掺杂原子并溶解在液体溶液中的分子沉积在半导体表面。对最终掺杂样品特性的控制取决于对沉积后分子行为的深入研究。已知分子会在样品表面形成自组装单分子层,但对于延长沉积时间后可能沉积在其上的多层的作用和行为知之甚少。在这项工作中,我们通过采用高分辨率形态学和电学表征方法,研究了二乙基丙基膦酸酯在硅上随时间的分子表面覆盖率,并研究了沉积后表面处理对其的影响。我们将这些数据与分子-衬底系统的密度泛函理论模拟以及掺杂样品的电学测量结果一起呈现。这些结果使我们能够识别分子层形成过程中涉及的键合类型的差异,以及这些差异如何影响样品的最终掺杂分布。这将改善对基于分子掺杂的器件电学性能的控制,从而对其性能进行更精细的调整。