State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
Biotechnol Lett. 2021 Oct;43(10):2035-2043. doi: 10.1007/s10529-021-03169-z. Epub 2021 Aug 26.
3,4-Dihydroxybutyric acid (3,4-DHBA) is a multifunctional C4 platform compound widely used for the synthesis of various materials, including pharmaceuticals. Although, a biosynthetic pathway for 3,4-DHBA production has been developed, its low yield still precludes large-scale use. Here, a heterologous four-step biosynthetic pathway was established in recombinant Escherichia coli (E. coli) using a combinatorial strategy.
Several aldehyde dehydrogenases (ALDHs) were screened, using in vitro enzyme assays, to identify suitable catalysts for the dehydrogenation of 3,4-dihydroxybutanal (3,4-DHB) to 3,4-DHBA. A pathway containing glucose dehydrogenase (BsGDH) from Bacillus subtilis, D-xylonate dehydratase (YagF) from E. coli, benzoylformate decarboxylase (PpMdlC) from Pseudomonas putida and ALDH was introduced into E. coli, generating 3.04 g/L 3,4-DHBA from D-xylose (0.190 g 3,4-DHBA/g D-xylose). Disruption of competing pathways by deleting xylA, ghrA, ghrB and adhP contributed to an 87% increase in 3,4-DHBA accumulation. Expression of a fusion construct containing PpMdlC and YagF enhanced the 3,4-DHBA titer, producing the highest titer and yield reported thus far (7.71 g/L; 0.482 g 3,4-DHBA/g D-xylose).
These results showed that deleting genes from competing pathways and constructing fusion proteins significantly improved the titer and yield of 3,4-DHBA in engineered E. coli.
3,4-二羟基丁酸(3,4-DHBA)是一种多功能 C4 平台化合物,广泛用于合成各种材料,包括药物。尽管已经开发出 3,4-DHBA 的生物合成途径,但由于其产量低,仍无法大规模使用。在这里,使用组合策略在重组大肠杆菌(E. coli)中建立了一个异源四步生物合成途径。
通过体外酶测定筛选了几种醛脱氢酶(ALDHs),以鉴定合适的催化剂用于将 3,4-二羟基丁醛(3,4-DHB)脱氢为 3,4-DHBA。在包含枯草芽孢杆菌葡萄糖脱氢酶(BsGDH)、大肠杆菌 D-木酮糖酸脱水酶(YagF)、恶臭假单胞菌苯甲酰甲酸脱羧酶(PpMdlC)和 ALDH 的途径中,将其引入 E. coli,从 D-木糖(0.190 g 3,4-DHBA/g D-木糖)生成 3.04 g/L 3,4-DHBA。通过敲除 xylA、ghrA、ghrB 和 adhP 来破坏竞争途径,有助于 3,4-DHBA 积累增加 87%。表达包含 PpMdlC 和 YagF 的融合构建体增强了 3,4-DHBA 的产量,产生了迄今为止报道的最高产量和产率(7.71 g/L;0.482 g 3,4-DHBA/g D-木糖)。
这些结果表明,从竞争途径中敲除基因和构建融合蛋白可显著提高工程大肠杆菌中 3,4-DHBA 的产量和产率。