Drägerwerk AG & Co. KGaA, 23558 Lübeck, Germany.
Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center University of Freiburg, 79108 Freiburg, Germany.
Sensors (Basel). 2021 Aug 23;21(16):5663. doi: 10.3390/s21165663.
This work investigates elimination methods for cardiogenic artifacts in respiratory surface electromyographic (sEMG) signals and compares their performance with respect to subsequent fatigue detection with different fatigue algorithms. The analysis is based on artificially constructed test signals featuring a clearly defined expected fatigue level. Test signals are additively constructed with different proportions from sEMG and electrocardiographic (ECG) signals. Cardiogenic artifacts are eliminated by high-pass filtering (HP), template subtraction (TS), a newly introduced two-step approach (TSWD) consisting of template subtraction and a wavelet-based damping step and a pure wavelet-based damping (DSO). Each method is additionally combined with the exclusion of QRS segments (gating). Fatigue is subsequently quantified with mean frequency (MNF), spectral moments ratio of order five (SMR5) and fuzzy approximate entropy (fApEn). Different combinations of artifact elimination methods and fatigue detection algorithms are tested with respect to their ability to deliver invariant results despite increasing ECG contamination. Both DSO and TSWD artifact elimination methods displayed promising results regarding the intermediate, "cleaned" EMG signal. However, only the TSWD method enabled superior results in the subsequent fatigue detection across different levels of artifact contamination and evaluation criteria. SMR5 could be determined as the best fatigue detection algorithm. This study proposes a signal processing chain to determine neuromuscular fatigue despite the presence of cardiogenic artifacts. The results furthermore underline the importance of selecting a combination of algorithms that play well together to remove cardiogenic artifacts and to detect fatigue. This investigation provides guidance for clinical studies to select optimal signal processing to detect fatigue from respiratory sEMG signals.
本研究旨在探讨消除呼吸表面肌电(sEMG)信号中心源性伪迹的方法,并比较它们在使用不同疲劳算法进行后续疲劳检测时的性能。该分析基于具有明确预期疲劳水平的人为构建的测试信号。测试信号通过不同比例的 sEMG 和心电图(ECG)信号叠加构建。通过高通滤波(HP)、模板减法(TS)、新提出的两步法(TSWD),包括模板减法和基于小波的阻尼步骤以及纯基于小波的阻尼(DSO)来消除心源性伪迹。每种方法都与 QRS 段(门控)的排除相结合。随后使用平均频率(MNF)、五阶谱矩比(SMR5)和模糊近似熵(fApEn)对疲劳进行定量评估。测试了不同的伪迹消除方法和疲劳检测算法组合,以确保它们在 ECG 污染程度增加的情况下仍能提供不变的结果。DSO 和 TSWD 两种伪迹消除方法在“清洁”后的 EMG 信号方面都显示出了有希望的结果。然而,只有 TSWD 方法在不同程度的伪迹污染和评估标准下,在后续的疲劳检测中能够实现更好的结果。SMR5 可以被确定为最佳的疲劳检测算法。本研究提出了一种信号处理链,以确定存在心源性伪迹时的神经肌肉疲劳。研究结果进一步强调了选择能够很好地协同工作以消除心源性伪迹和检测疲劳的算法组合的重要性。本研究为临床研究提供了指导,以选择最佳的信号处理方法从呼吸 sEMG 信号中检测疲劳。