Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain.
Departamento de Electrónica, Universidad de Alcalá (UAH), Escuela Politécnica Superior, Alcalá de Henares (Madrid), E-28871 Alcalá de Henares, Spain.
Sensors (Basel). 2021 Aug 23;21(16):5661. doi: 10.3390/s21165661.
This paper presents the first photoplethysmographic (PPG) signal dynamic-based biometric authentication system with a Siamese convolutional neural network (CNN). Our method extracts the PPG signal's biometric characteristics from its diffusive dynamics, characterized by geometric patterns in the (p,q)-planes specific to the 0-1 test. PPG signal diffusive dynamics are strongly dependent on the vascular bed's biostructure, unique to each individual. The dynamic characteristics of the PPG signal are more stable over time than its morphological features, particularly in the presence of psychosomatic conditions. Besides its robustness, our biometric method is anti-spoofing, given the complex nature of the blood network. Our proposal trains using a national research study database with 40 real-world PPG signals measured with commercial equipment. Biometric system results for input data, raw and preprocessed, are studied and compared with eight primary biometric methods related to PPG, achieving the best equal error rate (ERR) and processing times with a single attempt, among all of them.
本文提出了首个基于光电容积脉搏波(PPG)信号动态的双流卷积神经网络(CNN)生物认证系统。我们的方法从 PPG 信号的扩散动力学中提取生物特征,其特征在于针对 0-1 测试的 (p,q)-平面中的几何图案。PPG 信号的扩散动力学强烈依赖于血管床的生物结构,每个人都是独特的。与形态特征相比,PPG 信号的动态特征随时间更加稳定,特别是在存在身心状况的情况下。除了鲁棒性之外,我们的生物特征方法还具有抗欺骗性,因为血液网络的性质很复杂。我们的提案使用具有 40 个真实 PPG 信号的国家研究数据库进行训练,这些信号是使用商业设备测量的。对输入数据、原始数据和预处理数据进行了生物特征系统结果的研究,并与八种与 PPG 相关的主要生物特征方法进行了比较,在所有这些方法中,我们的方法在单次尝试中实现了最佳的等错误率(ERR)和处理时间。