Červinka Ctirad, Fulem Michal
Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic.
Pharmaceutics. 2021 Aug 13;13(8):1253. doi: 10.3390/pharmaceutics13081253.
Glass transition temperature () is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted , analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.
玻璃化转变温度()是一种重要的材料特性,它预先决定了无定形固体的动力学稳定性。在活性药物成分(API)的背景下,人们有动力通过与其他化学物质(称为辅料)形成无定形混合物来最大化它们的。分子动力学模拟是一种自然的计算工具,用于以全原子分辨率研究无定形材料的结构、动力学和内聚性之间的关系。这项工作提出了一项计算研究,主要针对四种选定的API(卡马西平、外消旋布洛芬、吲哚美辛和萘普生)与两种核碱基(腺嘌呤和胞嘧啶)的玻璃化转变温度预测。由于经典的非极化模拟未能达到预测的定量准确性,因此对纯API及其与核碱基混合物的本体相中的内部动力学、氢键和内聚力进行分析,以解释预测趋势。本手稿揭示了一种系统搜索有益的API和辅料对(混合时具有最大)的方法。通过分子模拟监测API - 辅料系统的传输和内聚性质将使未来能够更有效地设计此类API制剂。