文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

轨迹检查:一种迭代临床医生驱动的强化学习研究设计方法。

Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.

机构信息

MIT CSAIL, IMES, Cambridge, MA.

Equal Contribution.

出版信息

AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:305-314. eCollection 2021.


DOI:
PMID:34457145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8378637/
Abstract

Reinforcement learning (RL) has the potential to significantly improve clinical decision making. However, treatment policies learned via RL from observational data are sensitive to subtle choices in study design. We highlight a simple approach, trajectory inspection, to bring clinicians into an iterative design process for model-based RL studies. We identify where the model recommends unexpectedly aggressive treatments or expects surprisingly positive outcomes from its recommendations. Then, we examine clinical trajectories simulated with the learned model and policy alongside the actual hospital course. Applying this approach to recent work on RL for sepsis management, we uncover a model bias towards discharge, a preference for high vasopressor doses that may be linked to small sample sizes, and clinically implausible expectations of discharge without weaning off vasopressors. We hope that iterations of detecting and addressing the issues unearthed by our method will result in RL policies that inspire more confidence in deployment.

摘要

强化学习(RL)有可能极大地改善临床决策。然而,通过 RL 从观察性数据中学习到的治疗策略对研究设计中的细微选择很敏感。我们强调了一种简单的方法,即轨迹检查,将临床医生纳入基于模型的 RL 研究的迭代设计过程中。我们确定模型在哪里建议出乎意料的激进治疗或对其建议的出乎意料的积极结果抱有期望。然后,我们检查与实际住院过程一起用学习到的模型和策略模拟的临床轨迹。将这种方法应用于最近关于脓毒症管理的 RL 工作,我们发现模型存在出院的偏差,对升压剂量的偏好可能与样本量小有关,以及临床上不合理的不依赖升压药而出院的预期。我们希望通过我们的方法发现和解决问题的迭代,将产生更能激发人们对部署信心的 RL 策略。

相似文献

[1]
Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.

AMIA Jt Summits Transl Sci Proc. 2021

[2]
Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.

BMC Med Inform Decis Mak. 2019-4-9

[3]
Transatlantic transferability of a new reinforcement learning model for optimizing haemodynamic treatment for critically ill patients with sepsis.

Artif Intell Med. 2021-2

[4]
Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.

AMIA Annu Symp Proc. 2020

[5]
Guideline-informed reinforcement learning for mechanical ventilation in critical care.

Artif Intell Med. 2024-1

[6]
Towards more efficient and robust evaluation of sepsis treatment with deep reinforcement learning.

BMC Med Inform Decis Mak. 2023-3-1

[7]
Reinforcement learning for intensive care medicine: actionable clinical insights from novel approaches to reward shaping and off-policy model evaluation.

Intensive Care Med Exp. 2024-3-25

[8]
Continuous action deep reinforcement learning for propofol dosing during general anesthesia.

Artif Intell Med. 2022-1

[9]
Continuous Action Reinforcement Learning From a Mixture of Interpretable Experts.

IEEE Trans Pattern Anal Mach Intell. 2022-10

[10]
A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.

Int J Neural Syst. 2023-12

引用本文的文献

[1]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

本文引用的文献

[1]
Interpretable Batch IRL to Extract Clinician Goals in ICU Hypotension Management.

AMIA Jt Summits Transl Sci Proc. 2020-5-30

[2]
Identifying Distinct, Effective Treatments for Acute Hypotension with SODA-RL: Safely Optimized Diverse Accurate Reinforcement Learning.

AMIA Jt Summits Transl Sci Proc. 2020-5-30

[3]
Guidelines for reinforcement learning in healthcare.

Nat Med. 2019-1

[4]
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.

Nat Med. 2018-10-22

[5]
Combining Kernel and Model Based Learning for HIV Therapy Selection.

AMIA Jt Summits Transl Sci Proc. 2017-7-26

[6]
MIMIC-III, a freely accessible critical care database.

Sci Data. 2016-5-24

[7]
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

JAMA. 2016-2-23

[8]
Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

JAMA. 2016-2-23

[9]
Reduction of intensive care unit length of stay: the case of early mobilization.

Health Care Manag (Frederick). 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索