MIT CSAIL, IMES, Cambridge, MA.
Equal Contribution.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:305-314. eCollection 2021.
Reinforcement learning (RL) has the potential to significantly improve clinical decision making. However, treatment policies learned via RL from observational data are sensitive to subtle choices in study design. We highlight a simple approach, trajectory inspection, to bring clinicians into an iterative design process for model-based RL studies. We identify where the model recommends unexpectedly aggressive treatments or expects surprisingly positive outcomes from its recommendations. Then, we examine clinical trajectories simulated with the learned model and policy alongside the actual hospital course. Applying this approach to recent work on RL for sepsis management, we uncover a model bias towards discharge, a preference for high vasopressor doses that may be linked to small sample sizes, and clinically implausible expectations of discharge without weaning off vasopressors. We hope that iterations of detecting and addressing the issues unearthed by our method will result in RL policies that inspire more confidence in deployment.
强化学习(RL)有可能极大地改善临床决策。然而,通过 RL 从观察性数据中学习到的治疗策略对研究设计中的细微选择很敏感。我们强调了一种简单的方法,即轨迹检查,将临床医生纳入基于模型的 RL 研究的迭代设计过程中。我们确定模型在哪里建议出乎意料的激进治疗或对其建议的出乎意料的积极结果抱有期望。然后,我们检查与实际住院过程一起用学习到的模型和策略模拟的临床轨迹。将这种方法应用于最近关于脓毒症管理的 RL 工作,我们发现模型存在出院的偏差,对升压剂量的偏好可能与样本量小有关,以及临床上不合理的不依赖升压药而出院的预期。我们希望通过我们的方法发现和解决问题的迭代,将产生更能激发人们对部署信心的 RL 策略。
AMIA Jt Summits Transl Sci Proc. 2021
BMC Med Inform Decis Mak. 2019-4-9
Artif Intell Med. 2024-1
BMC Med Inform Decis Mak. 2023-3-1
Artif Intell Med. 2022-1
IEEE Trans Pattern Anal Mach Intell. 2022-10
Int J Neural Syst. 2023-12
J Big Data. 2021
AMIA Jt Summits Transl Sci Proc. 2020-5-30
AMIA Jt Summits Transl Sci Proc. 2020-5-30
Nat Med. 2019-1
AMIA Jt Summits Transl Sci Proc. 2017-7-26
Sci Data. 2016-5-24
Health Care Manag (Frederick). 2014