University of Missouri-Kansas City School of Medicine, MO.
Children's Mercy Hospital, Kansas City, MO.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:565-574. eCollection 2021.
Selecting quality improvement projects can often be a reactive process. In order to demonstrate a data-driven strategy, we used multi-site, de-identified electronic health record (EHR) data to prioritize the severity of a quality concern: inappropriate A1c test orders for sickle cell disease patients in two randomly chosen facilities (Facility A & B). The best linear unbiased predictions (BLUP) generated from Generalized Linear Mixed Model (GLMM) was estimated for all 393 facilities with 37,151 SCD patients in the Cerner Health FactsTM (HF) data warehouse based on the ratio of inappropriate A1c orders. Ranking the BLUP after applying the GLMM indicates that the facility A being in the second quartile may not have a quality gap as significant as facility B in the top quartile for this quality concern. This study illustrates the utility of multisite EHR data for evaluating QI projects and the utility of GLMM to enable this analysis.
选择质量改进项目通常是一个被动的过程。为了展示一种数据驱动的策略,我们使用多站点、去识别的电子健康记录 (EHR) 数据来确定质量问题的严重程度:在两个随机选择的设施(设施 A 和 B)中,对镰状细胞病患者进行 A1c 测试的不当医嘱。根据不适当的 A1c 订单比例,从 Cerner Health FactsTM (HF) 数据仓库中的 393 个设施和 37151 名 SCD 患者中,使用广义线性混合模型 (GLMM) 生成最佳线性无偏预测 (BLUP)。在应用 GLMM 后对 BLUP 进行排名表明,设施 A 处于第二四分位,可能不像设施 B 处于前四分位那样,在这个质量问题上存在明显的质量差距。本研究说明了多站点 EHR 数据在评估 QI 项目中的实用性,以及 GLMM 在实现这种分析中的实用性。