Kuwahara Tomotaka, Saito Keiji
Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP),1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
Department of Physics, Keio University, Yokohama 223-8522, Japan.
Phys Rev Lett. 2021 Aug 13;127(7):070403. doi: 10.1103/PhysRevLett.127.070403.
In this work, we investigate how quickly local perturbations propagate in interacting boson systems with Bose-Hubbard-type Hamiltonians. In general, these systems have unbounded local energies, and arbitrarily fast information propagation may occur. We focus on a specific but experimentally natural situation in which the number of bosons at any one site in the unperturbed initial state is approximately limited. We rigorously prove the existence of an almost-linear information-propagation light cone, thus establishing a Lieb-Robinson bound: the wave front grows at most as t log^{2}(t). We prove the clustering theorem for gapped ground states and study the time complexity of classically simulating one-dimensional quench dynamics, a topic of great practical interest.
在这项工作中,我们研究了在具有玻色 - 哈伯德型哈密顿量的相互作用玻色子系统中,局部微扰传播的速度有多快。一般来说,这些系统具有无界的局部能量,并且可能会出现任意快的信息传播。我们关注一种特定但在实验上很自然的情况,即未受微扰的初始状态下任何一个格点上的玻色子数量大约是有限的。我们严格证明了几乎线性的信息传播光锥的存在,从而建立了一个利布 - 罗宾逊界:波前最多以(t\log^{2}(t))的速度增长。我们证明了有能隙基态的聚类定理,并研究了经典模拟一维猝灭动力学的时间复杂度,这是一个具有重大实际意义的课题。